

电气安全性能综合分析仪 HEX系列用户手册

HEX410/HEX420/HEX430 电 气安全性能综合分析仪

目录

第1章	简介	1
1.1	一般规定	.1
1.2	使用规定	.1
1.3	安全操作规定	.2
1.4	技术用语	.2
1.5	安规介绍	.3
1.6	安规测试	.3
	1.6.1 耐压测试(Dielectric Withstand Voltage Test)	.3
	1.6.2 绝缘电阻测试(Insulation Resistance Test)	.5
	1.6.3 接地电阻测试(Ground Bond Test)	.5
	1.6.4 电参数测试(Run Test)	.5
	1.6.5 接触电流测试(Touch Current Test)	.5
	1.6.6 电位均衡测试(Ground Bond Test)	.6
	1.6.7 整车绝缘测试(RUN Test)	.6
	1.6.8 绝缘监测测试(Touch Current Test)	.6
第2章	安装	7
2.1	关于包装	.7
2.2	关于电源	.7
2.3	安装环境	.7
2.4	拆封和检查	.8
2.5	首次上电检查	.8
第3章	产品介绍	9
3.1	测试功能介绍	.9
3.2	产品特点1	11
3.3	外观图1	2
第4章	技术规格1	.5
4.1	功能及规格1	15
4.2	HEX410、420、430系列面板说明1	9
4.3	HEX410、420、430 系列背板说明2	22
第5章	设置与测试	8
5.1	测试接线	28
	5.1.1 连接测试盒和接地测试钳2	28
	5.1.2 连接本机电源	29
5.2	开机	30
	5.2.1 功能选择	30
5.3	系统设置	31
	5.3.1 显示亮度	32
	5.3.2 报警音量	\$2
	5.3.3 系统语言	\$2
	5.3.4 系统密码	\$2
	5.3.5 起始电压	\$2
	5.3.6 失败模式	33

5.3.7 结果显	显示	
5.3.8 系统日]期	
5.3.9 型号版	反本	
5.3.10 通信:	地址	
5.3.11 通信法	波特率	
5.3.12 通信	协议	
5.3.13 外接	电源	
5.3.14 系统	升级	
5.4 组别选择		34
5.4.1 组别约	扁辑	
5.5 参数设置		35
5.5.1 交流	耐压(AC Withstand Test)测试设置	
5.5.2 直流	耐压(DC Withstand Test)测试设置	
5.5.3 绝缘	:电阻(Insulation Resisitance Test)测试设置	
5.5.4 开路	·侦测(Open Short Circuit Detection Test)测试设置	
5.5.5 接地	电阻(Ground Bond Test)测试设置	40
5.5.6 泄漏	电流(Leakage Current Test)测试设置	41
5.5.7 功率	测试(Run Test)设置	51
5.5.8 启动	测试(Start Test)设置	
5.5.9 等待	测试(Wait Test)设置	53
5.5.10 删除	测试项	53
5.6 测试开始		54
5.6.1 测试开	F始	54
5.6.2 补偿测	则试	55
5.6.3 执行功	b率测试	56
5.6.4 执行启	3动测试	56
5.6.5 信息访	名明	
5.7 扩展功能		58
5.7.1 U 盘		58
5.7.2 PLC		59
5.7.3 条码		59
5.7.4 打印		60
5.7.5 LAN		60
5.7.6 启动银		60
5.8 关机		60
第6章 使用接口。		61
 6.1 报警灯接口. 		61
6.2 PLC 输出接	口	61
6.3 遥控接口		62
6.4 外接选组器	接口	62
6.5 启动锁接口.		63
6.6 USB 接口		64
6.7 通信接口		64
6.8 外部设备扩	展接口	64

第7章 维护指南	
7.1 维护和保养	
7.1.1 定期维护	
7.1.2 日常维护	66
7.1.3 使用者的修改	66
7.2 简单故障处理	66
第8章 通信协议	68
握手协议	
通信接口定义	68
通信协议	68

第1章 简介

1.1 一般规定

使用本仪器以前,请先了解本机所使用和相关的安全标志,以策安全。 本仪器所引用的安全规范为 Safety Class I 的规定(机体具有保护用的接地端子)。 安全守则 不允许无关人员以及未经训练合格人员进入测试站; 操作人员必须持续不断进行培训; <u>衣着规定</u> 操作人员不可穿着有金属装饰物的服装或配戴金属饰物、手表; <u>医学规定</u> 本仪器不允许有心脏疾病或类似风险人员操作。 <u>测试安全程序规定</u>

- 禁止对带电电路或设备作耐压测试;
- 如果仪器具有外部安全接地点,应确认接地点已被接好特别注意,不论被测物为具电极的绝缘材料、具有高压连接点或线的零件或是具有二孔或三孔的电源线的待测物,开机前必须确认已将高压回路线(Return/Sense-)接好。
- 只有在测试时才插上高压测试线,取用高压线(夹)必须握在绝缘部分—绝对不能直接触摸 高压输出端(夹)。必须确认操作人员均能够完全自主掌控本仪器的控制开关及遥控开关, 遥控开关必须放置到固定位置,不能任意放置。
- 海思全系列安规测试仪的回路线(Return/Sense-)并不直接接地。这种设计可量测到极微量的漏电电流,但是在做测试时,被测物必须与地线、大地完全绝缘。
- 如果被测物地线直接接地,可能会造成无法量测到电流或所量测到的电流不准确。若有任何不清楚的地方,请与海思科技的客服部联系。
- 在耐压测试进行中,绝对不能碰触测试对象或任何与被测物有连接的对象。
- **4** 或 高压警告标识,该标识用于表明端子间有高压输出。
- ▲ 提示注意标识,该标识用于表明仪器操作中应特别注意的地方。
- (→)接地标识,该标识用于表明仪器的安全接地端子。

1.2 使用规定

测试站安排工作位置

工作站的位置安排必须在一般人员非必经之处。如果工作站位置选定无法作做到工作站 与其它部门隔开时,应特别标明"高**压测试站**",非专业人员不得进入。如果高压测试站与其 它工作站非常接近时,必须特别注意安全问题。在高压测试时,必须特别标明"危险!高压 测试进行中非工作人员请勿靠近"。

输入电源

本仪器必须有良好的接地,以及将设备地线与电源接好,并确认电源极性及低电阻的地线回路。测试站电源必须有单独的开关,一旦有紧急事故发生时,应立即关闭电源,再进入处理事故。

<u>工作场所</u>

尽可能使用非导电材质的工作台或工作桌。操作人员和被测物间不得使用任何金属,如 果不能避免时,一定要确定安全接地并且确认与高电压端确实绝缘。操作人员作业时不得有跨 越被测物操作或调整安规测试仪的状况。如果被测物体积允许,尽可能将被测物放置在非导 电材质的箱子内测试,例如亚克力箱等。

测试场所必须随时保持整齐、干净,不得杂乱无章。不使用的仪器和测试线请远离工作站,工作站现场对象必须能让现场人员都能立即分辨出何者为正在测试的对象、被测对象、和已测试的对象。

绝对禁止在空气中含有可燃气体的地方或易燃物质的旁边使用本仪器。

操作人员规定人员资格

本仪器所输出的电压和电流足以造成人员伤害或致命的感电,必须由熟练的人员来使用 和操作。操作人员必须了解电压、电流和电阻等基本电学概念。操作人员应该知晓本仪器 是一部可调式的高压电源供应器,将电流回路线(Return/Sense-)接到待测物地线端,电流会从 高压输出端流经待测物内所有的接地回路。

1.3 安全操作规定

▲ 警告

本系列测试仪最高输出 5kVAC 高压,测试时必须注意以下事项和规定,

否则将危及生命安全!

- 禁止操作 禁止重复开关机,每次开关机应间隔 30s 以上。 禁止擅自打开机壳,测试仪必须由经过培训合格的工程师或技术员维护。
- 测试中注意事项 操作人员必须佩戴绝缘手套。

如果暂时离开操作区域或并不马上进行测试,必须关断电源。

测试过程中,绝对禁止碰触仪器测试端和被测体,以免触电。

操作人员必须确定能够完全自主掌握测试仪的控制开关和遥控开关。遥控开关不用时, 请取下。非合格的操作人员和不相关的人员应远离高压测试区。

必须将本测试仪的安全接地端子与大地**可靠连接**。只有在测试时才连接高压测试线,不 用的时候请及时取下,取用测试线(钳)必须握在绝缘部分,绝对禁止直接触摸高压输出端 (钳)。

万一发生异常,请立即按 STOP 键,停止测试,并关闭电源。

■ 必须记着下列安全要点

非合格的操作人员和不相关的人员应远离高压测试区。 随时保持高压测试区在安全和有秩序的状态。 在高压测试进行中绝对不碰触测试对象或任何与被测物有连接的对象。 万一发生任何问题,请立即关闭高压输出。 在直流耐压测试后,必须先妥善放电,才能进行拆除测试线的工作。

1.4 技术用语

交流电压(AC): 有规则性和正负方向的电压,目前世界上大都使用每秒 60Hz 或 50Hz 的电压。

耐压崩溃(Breakdown): 绝缘体在某些情况之下会发生电弧或电晕的现象,如果电压逐

渐被提升,绝缘体会在某一个电压值突然崩溃,这时的电流和电压不会成为等比例线性增加。

导电(Conductive): 在每立方公分的体积内,其电阻值不超过 1000 Ω ,或每平方公分的表面积内,其电阻值不超过 100000 Ω 。

导电体(Conductor): 一种固体或液体物质,可以让电流流过,在每立方公分的体积内, 其电阻值不超过 1000 Ω。

电流(Current): 电子在导体上的流动, 其量测单位为安培(ampere)、毫安(milliampere)、 或微安培(microampere)等, 其代表符号为 I。

介电体(Dielectric):在两个导电体之间的绝缘物质,可以让两个导电体产生充电现象或出现电位差。

直流电(DC):电流只流向单一方向,具有极性的特点,一端为高电位,另一端为低电位。 耐压测试器(Hipot Tester):通常应用在待测物需打耐压测试的仪器。

绝缘体(Insulation): 具有 1000G \(\omega / cm³) 的气体、液体或固体,其目的在于避免电流在 两导电体之间流通。

绝缘电阻测试器(Insulation Resistance Tester): 一种具有电阻量测到 200MΩ以上能力的仪器,一般都必须在电阻表内使用一个高压电源供应器,量测能力才能超过 200 MΩ以上。

泄漏电流(Leakage): 是指电器在正常工作时,其火线与零线之间产生的极为微小的电流绝缘或电容体的阻抗值为恒定,除非发生耐压崩溃的现象。

电阻(Resistance):泛指所有用以产生电阻的电子或电机配件。电阻器的运作跟随欧姆定律,其电阻值定义为其电压与电流相除所得的商数。单位为 Ohm(Ω),代表符号为 R。

跳脱点(Trip Point): 在介电耐压测试时可以被判定为不可接受条件的最低电流量。

电压(Voltage):电子流在两导体之间的压力,通常为驱动电流在导体上流通的压力,代表符号为 V。

1.5 安规介绍

安规测试的重要性使用者的安全在消费意识高涨的现今世界,每一个电气和电子产品的制造商,必须尽最大的能力,将产品的安全做好。每一种产品的设计必须尽其可能,不让使用者有被感电的机会。纵然是使用者发生错误使用也应无感电机会。为了达到一般公认的安全要求,"耐压测试仪"就必须被使用。安规执行单位、例如 UL、CSA、IEC、BSI、VDE、TUV 和 JSI 等都要求各制造商在设计和生产电子或电气产品时要使用 "耐压测试仪 "作为安全测试。这些安规执行单位有时也会要求某些产品必须做绝缘电阻测试、接地电阻测试,甚至要求做泄漏电流测试。

1.6 安规测试

1.6.1 耐压测试(Dielectric Withstand Voltage Test)

耐压测试的基础理论是将一个产品暴露在非常恶劣的环境之下,如果产品能够在这种恶劣的环境之下还能维持正常状况,就可以确定在正常的环境之下工作,也一定可以维持很正常的状况。最常使用耐压测试的情况为:

- 设计时的功能测试:确定所设计的产品能达到其功能要求的条件。
- 生产时的规格测试:确认所生产的产品能达到其规格要求的标准。
- 品保时的确认测试:确认产品的质量能符合安规的标准。
- 维修后的安全测试:确认维修后的产品能维持符合安规的标准。

不同的产品有不同的技术规格,基本上在耐压测试时是将一个高于正常工作的电压加在 产品上测试,这个电压必须持续一段规定的时间。如果一个零组件在规定的时间内,其漏电 流数值亦保持在规定的范围内,就可以确定这个零组件在正常的条件下运转,应该是非常安全。而优良的设计和选择良好的绝缘材料可以保护使用者,让他免予受到意外感电。

本仪器所做的耐压测试,一般称之为 " 高电压介电测试 ",简称为 " 耐压测试 "。基本的规定是以两倍于被测物的工作电压,再加一千伏特,作为测试的电压标准。有些产品的测试电压可能高于两倍工作电压加一千伏特。

例如有些产品的工作电压范围是从 100V 到 240V,这类产品的测试电压可能在 1000V 到 4000V之间或更高。一般而言,具有 "双绝缘 "设计的产品,其使用的测试电压 可能高于两倍工作电压+1000 V 的标准。

耐压测试在产品的设计和样品制作时比正式生产时的测试更为精密,因为产品在设计测 试阶段便已决定产品的安全性。虽然在产品设计时只是用少数的样品来作判断,然而生产时 的在线测试更应严格要求所有的产品都必须能通过安规标准,可以确认没有不良品会流出生 产线。

耐压测试器的输出电压必须保持在规定电压的 100%到 120%的范围内。AC 耐压测试器的输出频率必须维持在 40 到 70Hz 之间,同时其波峰值不得低于均方根(RMS)电压值的 1.3 倍,并且其波峰值不得高于均方根(RMS)电压值的 1.5 倍。

高压测试能检测出下列状况

- 绝缘材料的绝缘强度太弱
- 绝缘体上有针孔
- 零组件之间的距离不够
- 绝缘体被挤压而破裂

1.6.1.1 交流耐压(ACW)测试的优缺点

请先与受测试产品所指定的安规单位确认该产品应该使用何种电压,有些产品可以同时 接受直流和交流两种测试,但是仍然有多种产品只允许接受直流或交流中的一种测试。如果 安规规范允许同时接受直流或交流测试,制造厂就可以自己决定何种测试对于产品较为适 当。为了达成此目地,使用者必须了解直流和交流测试的优缺点。

交流耐压(ACW)测试的特点大部份做耐压测试的被测物都会含有一些杂散电容量。用 交流测试时可能无法充饱这些杂散电容,会有一个持续电流流过这些杂散电容。

交流耐压(ACW)测试的优点

1. 一般而言,交流测试比直流测试更容易被安规单位接受。主因是大部份的产品都使 用交流电,而交流测试可以同时对产品作正负极性的测试,与产品使用的环境完全一致,合 乎实际使用状况。

2. 由于交流测试时无法充饱那些杂散电容,但不会有瞬间冲击电流发生,因此不需让 测试电压缓慢上升,可以一开始测试就全电压加上,除非这种产品对冲击电压很敏感。

3. 由于交流测试无法充满那些杂散电容,在测试后不必对测试物作放电的动作,这是 另外一个优点。

交流耐压(ACW)测试的缺点

主要的缺点为,如果被测物的杂散电容量很大或被测物为电容性负载时,这样所产生的电流,会远大于实际的漏电电流,因而无法得知实际的漏电电流。

 另外一个缺点是由于必须供应被测物的杂散电容所需的电流,机器所需输出的电流 会比采 用直流测试时的电流大很多。这样会增加操作人员的危险性。

1.6.1.2 直流耐压(DCW)测试的优缺点

直流耐压(DCW)测试的特点在直流耐压测试时,被测物上的杂散电容会被充满,直流耐压测试时所造成的容性电流,在杂散电容被充满后,会下降到趋近于零。

直流耐压(DCW)测试的优点 一旦被测物上的杂散电容被充满,只会剩下被测物实际的

漏电电流。直流耐压测试可以很清楚的显示出被测物实际的漏电电流。

另外一个优点是由于仅需在短时间内,供应被测物的充电电流,其它时间所需供应的电流非常小,所以机器的电流容量远低于交流耐压测试时所需的电流容量。

直流耐压(DCW)测试的缺点

1. 除非被测物上没有任何电容量存在,否则测试电压必须由 "零 "开始,缓慢上升,以 避免充电电流过大,电容量越大所需的缓升时间越长,一次所能增加的电压也越低。充电电 流过大时,一定会引起测试器的误判,使测试的结果不正确。

2. 由于直流耐压测试会对被测物充电,所以在测试后,一定要先对被测物放电,才能做下一步工作。

3. 与交流测试不一样,直流耐压测试只能单一极性测试,如果产品要使用于交流电压 下,这个缺点必须被考虑。这也是大多数安规单位都建议使用交流耐压测试的原因。

4. 在交流耐压测试时,电压的波峰值是电表显示值的 1.4 倍,这一点是一般电表所不 能显示的,也是直流耐压测试所无法达到的。所以多数安规单位都要求,如果使用直流耐压 测试,必须提高测试电压到相等的数值。

1.6.2 绝缘电阻测试(Insulation Resistance Test)

新设计的一些安规分析仪大都将绝缘电阻测试的功能涵盖在内,基本上绝缘电阻测试功 能必须提供一个 500 到 1000VDC 的电压,同时电阻的量测范围也必须可以由几百 kΩ 量测 到几个 GΩ。这些功能可以让产品的制造厂符合安全要求的规定,TUV 和 VDE 等安规执 行单位在某些特定的产品会要求先做绝缘电阻的测试,然后才能执行耐压测试,这项规定目 前大都被引用在产品设计所执行的安规试验上。绝缘电阻测试的基本理论与耐压测试非常类 似,耐压测试的判定是以漏电流数值为基准,而绝缘电阻测试则以电阻的数值作为判定依据, 通常必须为多少 MΩ 以上。 绝缘电阻值越高表示产品的绝缘越好。绝缘电阻测试的接线方 式与耐压测试完全相同,测量到的绝缘电阻值为两个测量点之间以及其外围连接在一起的各 项关连网络所形成的等效电阻值。

1.6.3 接地电阻测试(Ground Bond Test)

接地电阻测试的主要目的为确定被测物在故障的情况之下,安全接地线是否能承担故障 的电 流流量,接地的电阻值必须越低越好,这样才能确保一旦产品发生故障时,在输入的 电源开关尚未切断电源以前,可以让使用者免于感电的危险和威胁。

1.6.4 电参数测试(Run Test)

许多产品制造商希望产品在最终的安规测试之后也能开机测试以便确认产品的功能,除 了测试产品的基本功能外,许多顾客也需要一些产品在测试时的基本数据。功率测试允许待 测物(产品)在安规测试之后立刻提供电源给待测物,在待测物测试时并显示电流、电压、功 率及功率因子的数值。

1.6.5 接触电流测试(Touch Current Test)

接触电流测试是诸多安规测试之中的一项测试,通常安规执行单位、例如 UL、CSA、 IEC、 BSI、VDE、TUV 和 JSI 等会要求某些产品必须做这项测试。 接触电流的测试规格 视各种不同的产品而有很大的不同,产品应用的场所和功能的不同,也会造成规格标准的差 别。

泄漏电流(Current Leakage)和接触电流(Touch Current)测试为通称的接触电流测试条款, 事实上可以被区分为三种不同的测试,分别为对地泄漏电流(Earth Leakage Current)、对表面 泄漏电流(Enclosure 或 Surface Leakage Current)和表面间泄漏电流(Applied Part 或 Surface to Surface Leakage)。主要的不同点在于测试棒所量测位置的不同而有所不同,对地泄漏电流 为漏电电流经由电源在线的接地线流回大地,而表面泄漏电流是由于人员触摸机体时,泄漏 电流经由人体流回大地。另外表面间泄漏电流或称为医疗泄漏电流(Patient Lead Leakage)则 为任何应用对象之间或流向应用对象的泄漏电流,通常只有医疗仪器有这项测试的要求。这 些测试的主要目的为让使用者在操作或手握应用对象时非常安全,而不致于有感电伤害的危 险。

接触电流测试模块所提供的测试能力完全符合 UL 544、IEC 950、UL 1950、IEC 1010、 UL 3101、IEC 601-1、UL 2601、UL 1563 和其他测试规格所规定的接触电流测试规格的标 准。 接触电流测试为一种产品的泄漏电电流经由一组摸拟人体阻抗电路作为量测依据的测 试,这个模拟人体阻抗的电路被称为"人体阻抗模型(Measuring Device, MD)"。

本仪器标准备有八种不同的人体阻抗模型(MD),在本仪器的测试参数设定时可以选择 其中一组作为人体阻抗模型(MD)的依据,每一组的人体阻抗模型(MD)代表人体在不同情况 之下的阻抗。人体的阻抗由于人机接触点的位置、面积和电流的流向而有所不同,基于上述 这些理由,人体阻抗模型规格的选择必须依据要做何种测试以及所能允许的最大泄漏电流量 来决定。产品泄漏电流的量测不但要做产品正常工作和异常时的量测,同时必须做电源极性 反向时的量测,以避免当产品在输入电压的最高值(通常为输入电压额定值的 110%)工作时, 因异常或使用不当而导致的诸多问题和危险。

接触电流测试通常规定产品在开发设计和验证时必须做这项测试,这样可以确认产品在 设计时能够符合规格的标准,但是这仍无法保证生产在线的每一个产品都能符合规格的要 求,所以在生产在线生产的每个产品都必须做测试,才能完全保证产品符合规格的要求。

1.6.6 电位均衡测试(Ground Bond Test)

电位均衡是指在电动汽车中,高压部件的裸露导电部分(如金属外壳、防护罩等)与电 底盘良好连接,形成等电势体,以防止因电位差导致的电流伤害。

电位均衡是一种重要的安全要求,旨在通过减少或消除外露可导电部分之间的电位差, 来保护乘客和操作人员免受伤害。此外,电位均衡的阻抗值也有明确要求,如外露可导电壳 体之间的电位均衡通过接地来实现,主要目的是防止两个外露可导电壳体之间存在电压差, 危害到人身安全。

1.6.7 整车绝缘测试(RUN Test)

整车绝缘电阻是指整个车辆电气系统中各部分之间以及部件与车辆整体之间的绝缘状态。它是衡量车辆电气系统安全可靠性的重要指标之一。

在车辆电气系统中,绝缘电阻的大小和稳定性直接关系到车辆的安全性和正常运行。因此,了解和掌握整车绝缘电阻的概念对于确保车辆电气系统的高效运行至关重要。

整车绝缘电阻的概念涉及到整个车辆电气系统中的各个部分,包括车辆的电动机、电池、 电路等。当车辆电气系统的绝缘电阻处于理想状态时,电流不会在电气系统之间发生意外泄 漏,从而保证了车辆电气系统的可靠运行。

1.6.8 绝缘监测测试(Touch Current Test)

正常运行情况下,电动汽车动力系统是一个独立的系统,对车辆壳体是完全绝缘的, 但是不排除由于长时间车辆运行后高压线老化或受潮导致的绝缘降低而使得车身带电,而 且车辆工况复杂,振动、温度和湿度的急剧变化,酸碱气体的腐蚀等都会引起绝缘层的损 坏,使得绝缘性能下降。

当绝缘阻值低于绝缘电阻的最低要求时,应通过声、光报警提示驾驶员,例如仪表文 字或者图标显示、语音提示等。实时地监测绝缘性能对保证人员人身安全和车辆安全运行 具有重要意义;

第2章 安装

本章主要介绍 HEX 系列产品的拆封、检查、使用前的准备、储存等的规则。

2.1 关于包装

海思科技的产品是包装在一个使用泡沫保护的包装箱内,如果收到时的包装箱有破损, 请检查仪器的外观是否有无变形、刮伤、或面板损坏等。

如果有损坏,请立即通知海思科技或其经销商,并请保留包装箱和泡沫,以便了解发生的原因。我们的服务中心会帮您修护或更换新机,在未通知海思科技或其经销商前,请勿立即退回产品。

请保留所有的原始包装材料,如果仪器必须回厂维修,请用原来的包装材料包装。并请 先与海思科技的维修中心联系。送修时,请务必将电源线和测试线等全部的附件一起送回, 并注明故障现象和原因。另外,请在包装上注明"易碎品"请小心搬运。

如果无法找到原始包装材料来包装,请按照下列说明包装:

1. 先用泡沫或者其他缓冲材料将仪器包妥。

2. 再将仪器用最大可以承受 150KG 的多层纸箱包装。

3. 仪器的周围必须使用可防震的材料填充,厚度大约为 70 到 100mm (3 到 4inch), 仪器的面板必须先用厚纸板保护。

4. 妥善密封箱体。

5. 注明"易碎品"请小心搬运。

2.2 关于电源

本仪器使用 220V AC 10% 50 Hz 单相的电源。必须使用正确规格的保险丝,保险丝使 用规格已标示在仪器的背板上。更换保险丝前,必须先关闭输入电源,以避免危险。

在接上输入电源之前,必须先确认电源的地线已经接妥,同时也将地线接到机体上的接 地端子上。 仪器上的电源插头只能插在带有地线的电源插座上。如果使用延长线,必须注 意延长线是否带有接地线。本仪器是使用三芯电缆线,当电缆线插到具有地线的插座时,即 已完成机体接地。

2.3 安装环境

在选择测试仪的安装环境时,应考虑以下各项:

1. 远离易燃、易爆和腐蚀性介质,如酒精、稀释剂和硫酸等。

远离锅炉、加湿器、水源、热源、避免日晒。必须避免温度的急剧变化,温度急剧变化会使水气凝结于仪器内部。详情请见 4.1 系统一般规格。

▲ 注 意 当凝结水珠现象出现时,禁止使用测试仪。

3. 远离强电磁干扰源。

4. 远离明显的振动及冲击。

5. 工作环境宜无粉尘,通风良好,测试仪采用自然风冷,若通风条件不好,易引起仪器损坏。测试仪工作时后面板与墙壁保持至少 30cm 的距离。

6. 远离精密仪器——当本仪器高压输出时,被测物测试点处会产生电晕放电,发射射频

电磁波,干扰精密仪器工作。

2.4 拆封和检查

首先检查产品铭牌,确定机型与订单相符;然后对照"装箱单"核对包装箱中物品是否 齐全,若包装箱中物品与"装箱单"所列内容不符,请与海思科技仪器客服中心或经销商联系。

如果收到仪器时包装箱有破损,请检查仪器的外观有无变形、刮伤,或面板损坏等。如 果有损坏,请立即通知海思科技仪器客服中心或其经销商。我们的客服中心会为您修复或更 换新机。在未通知海思科技或其经销商前,请不要立即退回产品。

为了防止意外触电的发生,请不要自行打开仪器上盖。如果仪器有异常情况发生,请寻 求海思科技公司或其指定经销商的技术支持。

2.5 首次上电检查

在确认本仪器完好无损并安装到工作位置后,请按如下步骤进行检查:

1. 只接通本仪器的电源线,不接其他任何测试线,打开测试仪电源开关;

2. 仪器进入功能选择界面后,选择 F 菜单开始测试进入产品测试界面,直接按 START 键进行测试,测试状况若如下所述:

a. 接地因开路而报警;

b. 绝缘显示电阻>50GΩ;

c. 耐压显示较小击穿电流或零值;

则表明仪器基本正常;可参照第四章的操作说明对仪器进行更细致地检查。

 3. 首次开启仪器,若无显示,请检查并确认电源线连接良好;启动测试过程中,若有不 启动、无按键响应或无继电器动作声响等现象,请寻求海思科技公司或指定经销商的技术支 持。

第3章 产品介绍

3.1测试功能介绍

耐压接地同步测试功能

HEX410/HEX420/HEX430 内置双功放技术同步输出高压与大电流,实现接地导通电阻 与交/直流耐压、绝缘电阻同步测试,如下图 3-1-1 所示可以有效地节约测试时间,解决速度 瓶颈。

图 3-1-1 并行测试与普通测试的时间关系

直流电压快速放电功能

为确保测试人员的安全,HEX410/HEX420/HEX4300 内置剩余电压放电功能,在 50ms 内完成对被测物尤其是 容性组件的快速放电。

同时为了解决放电过程中容易出现的打火、拉弧以及 放电寿命问题,HEX410/HEX420/HEX430内置了灭弧装置 以及精密定时变频放电模块,在保障测试人员安全的同时 保障仪器的使用寿命。

内置多人体网络

HEX410/HEX420/HEX430 最多可内置 8 个模拟人体网络,分别符合下图所示的法规要求。

图 3-1-2 8 个模拟人体网络

漏电快速断电保护

图 3-1-3 漏电快速断电保护原理

高压测试对操作人员具有一定的危险性,HEX410/HEX420/HEX430内置漏电保护机制, 当使用人员触电后会在毫秒时间内完成漏电流侦测,立即切断电压输出,保障安全。 仪器采用硬件侦测,速度快,稳定度高,选配功能点检模块。

开短路侦测功能

HEX410/HEX420/HEX430 使用低压高频无损技术,提升输出电压频率,同时降低电压等级,对被测物进行断面电容侦测,可在 0.1s 内完成对输出端的开路以及短路情况判定,有效解决被测物实际漏电流都比较小而且短路状态下不适合进行高压有损测试的问题。

图 3-1-4 断面电容侦测

电弧侦测功能

图 3-1-5 电弧侦测

电弧是绝缘材料内部或表面因高压而产生一种自持放电现象,HEX410/HEX420/HEX430 不仅能够根据电弧等级完成对放电的判定,还能够记录一定频带下的放电波形。

信息化接口功能

支持 USB 条码枪,实现扫码启动、数据存储、条码绑定、信息上传等功能。在扫码启动后测试数据会自动与当前条码进行匹配,并能根据用户设定好的识别字段查询当前需要的测试程序,自动调取,并完成测试以及数据存储。

图 3-1-6 信息化接口

3.2产品特点

HEX410/HEX420/HEX430 分别内置 HEX310/HEX320/HEX330 电气安全性能综合分析

- 仪,涵盖交流耐压、直流耐压、绝缘电阻、接地导通电阻、功率、启动、泄漏电流、电弧侦
- 测、开路侦测等功能于一体,大屏触控,易学易用,精准高效,可靠稳定,接口丰富。 产品特点:
 - HEX410/HEX420 内置 5000VA 隔离稳压电源,可针对需求直接设定电压; HEX430 内置 30kW 隔离变压器;
 - 内置接地、耐压并行测试功能,速度提升;
 - 内置符合 IEC60601/GB9706.1 标准要求速升+缓升测试功能;
 - 内置 100 测试组,每组支持 50 步;
 - 开短路侦测功能:支持 OSC 交流输出侦测以及直流充电下限侦测两种模式;
 - 电弧侦测功能:内置基于波形识别的电弧侦测功能,国际唯一,抗干扰,准确度
 高;
 - 用户权限设置:内置密码功能区分不同等级用户;
 - 外配接口:标配 LAN、RS232、USB 等接口。选配 GPIB、RS485 接口;
 - 防触电保护功能:内置漏电保护功能,响应速度 us 级别;
 - 快速测试:测试步间延时<50ms
 - 信息化功能:支持条码扫描枪、U盘存储等外设;

3.3 外观图

第3章 产品介绍

图 3-3-1 HEX410/420 外观图

图 3-3-2 HEX430 外观图

4.1 功能及规格

HEX410/HEX420/HEX430系列整机规格如下表所示:

系列化型号配置				
型号	泄漏电流	功率	低压启动	内置电源
HEX410	单相	单相	单相	5000W
HEX420	8网络,带PH、PL	单相	单相	5000W
HEX430	单相/三相	单相/三相	单相/三相	10kW/30kW
交流耐压测试				
额定输出容量	定输出容量 5KV AC/40mA,可选 100mA、200mA,短路电流大于 200mA;			
交流电压输出	范围: (50~5000) V	, 分辨力: 1V, 误差	: ± (1%×设定值+5V)	
交流电压测量	范围: (0.050~5.000)) kV, 分辨力: 0.001k	Ⅴ,误差:±(1%×读数值	直+5 个字)
输出频率	50Hz/60Hz, 精度: ±	0.1Hz		
输出调整度	± (1%×设定值+5V)	,空载到满载		
波形失真度	正弦波, <2% (阻性)	〕		
交流电流测量	范围: 0.010~3.500,3.00~40.00mA(100.00mA 选配), 分辨力: 0.001/0.01mA, 误差: ±(1%× 读数值+5 个字)			
缓升与缓降时间	范围: 0, (0.1~999.9) s, 分辨力: 0.1s			
持续时间	范围: 0, (0.5~999.9) s, 分辨力: 0.1s, 误差: ± (1% ×设定值+1 个字)			
电弧侦测	1~9(9最灵敏), 0表示关电弧功能			
电流补偿	0.000~10.00mA,总电流+补偿电流 < 10mA(100mA 选配),自动			
直流耐压测试				
额定输出	6kVDC / 20mA			
直流电压输出	范围: (50~6000) VDC, 分辨率: 1V, 误差: ± (1%×设定值+5V)			
直流电压测量	范围: (0.050~6.000) kV DC, 分辨率: 1V, 误差: ±(1% ×读数值+5 个字)			
输出纹波	<2% (6kV/1mA 阻性负载)			
输出调整度	± (1%×设定值+2V), 空载到满载			
直流电流测量	直流电流测量 范围: 0.0~350.0/300~3500μA/3.00~ 20.00mA, 分辨力: 0.1/1μA/0.01mA,			mA,
	误差: ±(1%×读数值+5个字)			
缓升时间	范围: 0, (0.4~999.9) s, 0为关,			
持续时间	范围: 0, (0.5~999.9) s, 0为无限长,分辨力: 0.1s,误差: ±1% >设定值+1个字			
电弧侦测	1~9(9最灵敏), 0表示关电弧功能			
电流补偿	(0~200.0) µA, 自动			
放电时间	≤200ms			
最大容性负载	1uF < 1kV, $0.75uF < 21$	kV, 0.5 uF < 3 kV , 0.08	uF < 4kV, 0.04uF < 5kV	V
绝缘电阻测试。 1991年19月1日———————————————————————————————————				
额定输出	2500VDC/50GΩ			

直流电压输出	范围: (50~2500) V DC, 分辨率: 1V, 误差: ± (1% ×设定值+5V)		
直流电压测量	范围: (50~2500) V DC, 分辨率: 1V, 误差: ± (1% ×读数值+5V)		
电阻上下限设置	范围: 0.1Ω~50000MΩ, 上限包含无上限设定		
绝缘电阻测量	范围: 0.100MΩ~200.00GΩ, 分辨力: 0.001MΩ/0.01MΩ/0.1MΩ/0.001GΩ/0.01GΩ		
误差: 100V~499V: 0.100MΩ~2.000GΩ, ± (5% ×读数值+2字)			
	500V~2500V: 0.100MΩ~999.9MΩ, ± (2% ×读数值+2字)		
1.000GΩ~9.999GΩ: ± (5% ×读数值+2字)			
	10.00GΩ~50.00GΩ: ± (15% >读数值+2 字)		
缓升时间	范围: 0, (0.1~999.9) s, 0为关,		
延判时间	范围: 0, (0.5~999.9) s, 0为无限长,分辨力: 0.1s,误差: ±1% >设定值+1个字		
接地电阻测试			
额定输出	电流最大 40A, 电阻最大 600mΩ, 开路电压低于 12V		
输出电流	范围: (2.0 A~40.0 A) AC, 分辨率: 0.1A, 误差: ± (1%×设定值+2个字)		
电流波动	≤0.4%×设定值/分钟		
输出电压	范围: (3.0~10.0) V AC, 分辨力: 0.1V, 误差: ±(1%×设定值+2个字), 开路情况下		
输出频率	50Hz/60Hz, 精度: ±0.1Hz		
电阻测量	电流 ▲		
	40A		
精度范围			
0 10m Ω 100m Ω 160m Ω 600m Ω 电阻			
	范围: (10.0~99.9)mΩ, (100~600) mΩ, 分辨力: 0.1/1 mΩ:		
	测量误差: <100mΩ, ±(1% ×设定值+1mΩ); ≥100mΩ, ±(1% ×设定值+2个字)		
电阻补偿	(0~200)mΩ		
测试时间	范围: 0, (0.5~999.9) s, 0为无限长,分辨力: 0.1s,误差: ±1% >设定值+1个字		
	功率参数测试		
报警功能	功率上、下限报警		
功率上下限设置	范围:单相 0.00W~12000W,三相 0.00W~36000W,分辨力: 0.01W /0.1W /1W,		
判定误差: ± (0.1%×设定值+0.1%×量程)			
有功功率测量	范围:单相 0.10W~12.000kW,三相 0.10W~36.000kW,分辨力:0.01W/0.01W/0.001kW		
	误差: PF > 0.5: ± (0.1%×读数值+0.1%×量程)		
	PF≤0.5: ± (0.4%×读数值+0.1%×量程)		
电压测量	范围: 60.0V~300.0V, 峰值因数: ≤1.6, 分辨力: 0.01V /0.1V;		
	误差: ± (0.1% ×读数值+0.1% ×量程), 45Hz≤f≤65Hz		
电流上下限设置	开启电流报警功能时		
	范围: HEX420:低档 2mA~1000mA		
	HEX410/HEX420/HEX430: 高档 0.1A~40.00A, 分辨力: 0.01mA /0.1mA /0.001A		

	/0.01A			
	判定误差: ± (0.1% ×设定值+0.1% ×量程), 45Hz≤f≤65Hz			
电流测量	范围: HEX420:低档 2mA~1000mA			
	HEX410/HEX420/HEX430:高档0.1A~40.00A,分辨力:0.01mA/0.1mA/0.001A/0.01A			
	峰值因数:≤1.6, 分辨力: 0.01mA /0.1mA /0.001A /0.01A			
	误差: ± (0.1% ×读数值+0.1% ×量程), 45Hz≤f≤65Hz			
功率因数上下限	开启功率因数报警功能时			
设置	范围: (0.100~1.000), 分辨力: 0.001, 判定误差: ±0.01			
功率因数测量	范围: (0.100~1.000), 分辨力: 0.001			
	误差: ±0.01 (电压/电流幅值均大于相应量程的 10%)			
频率测量	范围: 45.00Hz ~65.00Hz, 分辨力: 0.01Hz, 误差: ±(0.1% ×读数值)			
测试时间	范围: 0, (0.5~999.9) s, 0为无限长,分辨力: 0.1s,误差: ±1 ×设定值+1 个字			
低压启动测试				
电流上下限设置	范围: 范围: HEX420:低档 2mA~1000mA			
	HEX410/HEX420/HEX430:高档 0.1A~40.00A			
	分辨力 0.01A, 判定误差: ± (0.1% ×设定值+0.1% ×量程)			
电压测量	范围: 6.00V~300.0V, 峰值因数: ≤1.6, 分辨力: 0.01V/0.1V;			
	误差: ± (0.1% ×读数值+0.1% ×量程), 45Hz≤f≤65Hz			
电流测量	范围: HEX420:低档 2mA~1000mA			
	HEX410/HEX420/HEX430:高档 0.1A~40.00A			
	峰值因数: ≤1.6, 分辨力 0.01A			
	误差: ± (0.1% ×读数值+0.1% ×量程) , 45Hz≤f≤65Hz			
测试时间	测试时间			
	过来,我们就是一些"你们,我们就是你们的"。 ————————————————————————————————————			
测试方式	HEX410/HEX420/HEX430 (单相) 支持工作模式 (动态泄漏) 与单一故障模式 (静态泄漏)			
	HEX430 (三相)支持其他模式, A/B/C/N 开关可任意组合			
内置人体网络	GB/T 12113 图 4(MDA)为主网络;			
电压测量	范围: 60.0V~300.0V、45Hz~65Hz 误差: ± (0.4% >读数值+0.1% >量程)			
负载电流	电流大于 40A 保护			
接触电流/泄漏电	0.0μA ~ 直流、15Hz≤f≤100kHz: ± (1.5% ×读数值+10 个字)			
流测量 (有效值)	999.9μA: 100kHz < f≤1000kHz, 10.0μA ~ 999.9μA: ±5% 冰读数值			
	1000μA ~ 直流、15Hz≤f≤100kHz: ± (1.5% ×读数值+10 个字)			
	7999μA: 100kHz < f≤1000kHz, 10μA ~ 7999μA: ±5% አ读数值			
	8.00mA ~ 直流、15Hz≤f≤100kHz: ± (1.5%×读数值+10个字)			
	20.00mA: 100kHz < f < 1000kHz, 0.01mA~20.00mA: ±5% >读数值			
接触电流补偿	范围:0.000~1.000mA 自动测量 可打开动关闭			
测试时间	范围: 0, (1~999.9), 0为无限长,分辨力: 0.1s,误差: +(1% x设定值+1 个字)			
	(测试方式为"自动" (火线对地、零线对地)时,时间各1半)			
直流输入阻抗	2kΩ±1% (GB12113 图 4)			
输入阻抗	≤100kHz 5%; >100kHz 10%			

频率响应	误差同电流测量允许误差		
系统一般规格。 1999年1999年1999年1999年1999年1999年1999年199			
安装位置	室内,海拔不高于 2000 米		
使用环境	温度	0~40°C	
	湿度	40°C, (20~90) %RH	
存储环境	温度	- 10 ~ 50°C	
	湿度	50°C, 90%RH, 24h	
输入电源		AC, 220V±10%, 50Hz±5%, 10A	
功耗	空载	小于 50W	
	满载	单相小于 550W, 三相小于 30kW	
外型尺寸 (mm)		545(W)x 1240(H)x 600(D)	
	重量	HEX410/HEX420 约 160kg	
		HEX430 约 230kg	

附件说明:(注:以下附件非全部为标配)

附件名称	规格
说明书	HEX410/HEX420/HEX430 说明书
合格证	HEX410/HEX420/HEX430 合格证
质保证	HEX410/HEX420/HEX430 质保证
主机电源线	国标 3*0.75-1.5 米
保险丝	10A 250VAC 快断 025.210020001 保险丝
PLC 端子	KF2EDGK-5.08-2P、4P、6P、8P 母头
测试钳 (红)	40A, 1.5m, 红色
测试钳 (黑)	40A, 1.5m, 黑色
测试盒	10A+16A 插座, 1.5m 线
高压测试线	测试夹+1.5m 线
回路测试线	测试夹+1.5m 线
辅助电源线	两芯+2.5 米线

4.2 HEX410、420、430系列面板说明

图 4-2-1 HEX410/HEX420 前面板

图 4-2-3 HEX410/HEX420/HEX430 前面板放大图

1、POWER 输入电源开关:标有国际标准 "1" (ON)和 "0" (OFF)符号的开关,作为输入的 电源开关。

2、启动键:绿色的瞬时接触开关,作为测试的启动开关,用于启动当前组别测试。

3、停止键: 红色的瞬时接触开关,在设定模式时其功能和 EXIT 键相同,可以作为离开设 定模式的开关。在测试进行时,作为关闭警报声进入下一个待测状态的开关。在测试进行之 中,也可以作为中断测试的开关。

4、电容式触控面板:7 时彩色触控屏幕,作为显示设置数据或测试结果的显示器。

5、USB 端口:可连接 USB Disk 来储存测试结果与储存设定参数,USB Disk 容量限制: 16GB(含)以下,兼容格式: FAT 32;可连接扫描条形码器,扫描条形码的格式请使用 code 128,支持 CINO-F680, Honeywell, Metrologic, DENSO。

6、F菜单按键:用户可根据屏幕上显示的软键盘功能操作对应的F按键。

7、方向按键:在各个功能模块下移动光标。

8、数字按键:在可供输入的光标位置处输入字母或者数字。

9、测试状态指示灯:指示仪器测试中(黄色)、测试失败(红色)、测试合格(绿色)。

10、高电压标志:表示 "高电压输出中、危险 "。

11、急停开关:测试过程中按下可紧急将设备断电。

12、电源开关: 控制设备是否上电启动的开关。

4.3 HEX410、420、430系列背板说明

图 4-3-1 HEX410 后面板图

图 4-3-2 HEX420 后面板图

图 4-3-2 HEX430 后面板图

HEX320 后面板

图 4-3-4 HEX410/HEX420/HEX430 后面板放大图 1

图 4-3-5 HEX410/HEX420 系列后面板放大图 2

图 4-3-6 HEX430 系列后面板放大图 3

- 1、H.V.端子:高压输出端子。
- 2、CURRENT+端子:接地阻抗测试的电流输出正端。
- 3、SENSE+端子: 接地阻抗测试的电压采样正端。
- 4、CURRENT-端子: 接地阻抗测试的电流输出负端。
- 5、SENSE-端子:既作为耐压测试的回路端,也是接地阻抗测试的电压采样的负端。

6、SIGNAL OUTPUT 端子:遥控讯号输出端子排,8P 插拔式接线端子,使用继电器(RELAY) 接点输出 PASS、FAIL 和 TESTING 等功能的讯号,以供遥控装置使用。

7、GROUP SELECT 端子: 支持遥控选择执行记忆组等操作。

8、SIGNAL INPUT 端子: 遥控讯号输入端子排, 2P+4P 插拔式接线端子,可以输入 START 和 STOP 的控制讯号,以及启动锁的锁定功能。

9、报警灯接口:可连接三色报警灯。

10、通信接口:可选配 RS232/RS485 接口,与上位机进行通信。

11、外接电源通信接口:可连接 AN97/AC60/AC11 系列变频电源、变压器切换装置、内置点 检装置等。

12、LAN 端子: 连接以太网, 速度可达 100Mb/s FullDuplex, 用于与 MES 对接等。

13、接地端子:机壳接地端子。在本仪器操作运转前,请务必将本接地安装妥当。

14、输入电源座:标准电源插座,内置电源保险丝座,如需更换保险丝时,请更换正确规格的保险丝。

15、OUT-L: 泄漏、功率测试时输出到待测物的火线(Line) 的输出端子。

16、OUT-N: 泄漏、功率测试时输出到待测物的中性线(Neutral)的输出端子。

17、PH: Probe-Hi, 外接测试棒, 测量电流通路的高端。

18、PL: Probe-Lo,外接测试棒,测量电流通路的低端。

19、INPUT-L: 待测物电源火线(Line)输入端子,一般接隔离变压器或交流电源供应器。

20、INPUT-N: 待测物电源中性线(Neutral)输入端子,一般接隔离变压器或交流电源供应器 **21、OUT-L1**: 既作为耐压测试的高压端,也是泄漏、功率测试时输出到待测物的 L1(A) 的 输出端子

22、OUT-L2: 既作为耐压测试的高压端,也是泄漏、功率测试时输出到待测物的 L2(B) 的输出端子

23、OUT-L3:既作为耐压测试的高压端,也是泄漏、功率测试时输出到待测物的L3(C)的输出端子

24、INPUT-L1: 待测物电源 L1(A)输入端子,一般接隔离变压器或交流电源供应器。

25、INPUT-L2: 待测物电源 L2(B)输入端子,一般接隔离变压器或交流电源供应器。

26、INPUT-L3: 待测物电源 L3(C)输入端子,一般接隔离变压器或交流电源供应器。

27、L: 设备整机输入电源 L(L)输入端子, 一般接隔离变压器或交流电源供应器。

28、N: 设备整机输入电源 N(N)输入端子, 一般接隔离变压器或交流电源供应器。

29、PE: 设备整机输入电源 PE(PE)输入端子,一般接大地。

30、接地端子: 设备机柜接地端子。在本仪器操作运转前,请务必将本接地安装妥当。

31、L1:设备整机输入电源L1(A)输入端子,一般接隔离变压器或交流电源供应器。

32、L2: 设备整机输入电源 L2(B)输入端子,一般接隔离变压器或交流电源供应器。

33、L3: 设备整机输入电源 L3(C)输入端子,一般接隔离变压器或交流电源供应器。

34、N: 设备整机输入电源 N(N)输入端子, 一般接隔离变压器或交流电源供应器。

35、接地端子:设备机柜接地端子。在本仪器操作运转前,请务必将本接地安装妥当。

36、输入电源座:标准电源插座,内置电源保险丝座,如需更换保险丝时,请更换正确规格。

第5章 设置与测试

5.1测试接线

请务必按照如下顺序进行测试接线:

连接测试盒和接地测试钳→连接被测体工作电源→连接本机电源→连接被测体。

5.1.1 连接测试盒和接地测试钳

图 5-1-1HEX410/HEX420 连接测试盒和接地测试钳示意图

图 5-1-2HEX430 连接测试盒和接地测试钳示意图

- 1) 将测试盒上的线如图方式连接,并锁紧接线端;
- 2) 将接地测试钳上的两根线如图方式连接,并锁紧接线端;

告请务必将接地测试钳、测试盒放在绝缘垫上。

5.1.2 连接本机电源

堃

图 5-1-3 HEX410/HEX420 连接本机电源

图 5-1-4 HEX430 连接本机电源

接地有两种方式,如图 5-1-5 所示。

1)测试仪使用三芯电源线,当电源线连接到具有地线的供电插座时,即已完成测试仪的机壳接地;

2) 将测试仪的接地端子连接到供电电源的地线。

5.2开机

在确保在以上步骤正确连接后,打开前面板电源开关,测试仪随即启动。

5.2.1 功能选择

进入功能选择界面则表示开机过程结束,功能选择界面如图 5-2-1 所示。

图 5-2-1 功能选择界面

在测试仪功能选择菜单界面下,可操作F菜单选择对应的功能模块,如下所示:

F菜单	功能、描述
测试开始	进入测试模块待测状态,进行产品的测试
组别选择	进入组别选择模块,选择调用测试组
参数设置	进入参数设置模块,设置当前选择的组别的内容
系统设置	进入系统设置模块,设置仪器系统参数
扩展功能	进入扩展功能模块,设置条码、U盘、打印、PLC、LAN 等信息
	F菜单 测试开始 组别选择 参数设置 系统设置 扩展功能

首次上电建议按照下文的顺序设定仪表。

5.3系统设置

系统设置界面如图 5-3-1 所示。

e alla	7	亲	统	殳置				
报警计	音量(100	%	通信地址	1			
报警计	音量(4		波特率	115200			
系统i	语言(中文(Chinese)		通信协议	SCPI			
系统智	密码	关闭)	外接电源	无电源			
起始明	电压(0	%	系统升级				
失败相	模式(失败后继续)					
结果	显示(所有列表显示						
系统	日期(2020-10-15 17:44:0	0					
型号牌	版本(HEX340 V1.0					返	旦
17:44	Intern	10~100		2/12:			-7	

图 5-3-1 仪器设置

通过触摸点击对应项目即可完成本界面中相关的各项参数设置; 设置完成后按 Exit 键退出,选择保存或者取消当前的设置并回到主菜单。

以下各节仅对所要设置的各项参数进行相关的说明。

5.3.1 显示亮度

显示亮度指的是仪器液晶面板的背灯亮度,共分为10级。

5.3.2 报警音量

蜂鸣器报警声音响度设置,自1至9分为九级,0则设定为关闭。

5.3.3 系统语言

仪器提供中文、英文两种语言显示方式。

5.3.4 系统密码

1)密码功能:开/关。若密码功能设置为"开",在功能选择界面下,进入"参数设置"、
 "系统设置"和"扩展功能"时,测试仪会先进入密码输入界面,提示输入密码,以防止未获授权人员对仪器设置的随意改动。

图 5-3-2 密码输入界面

2) 密码设置范围: 1~16 位数字或字母; 出厂默认密码关闭。

5.3.5 起始电压

交直流耐压输出的起始电压,起始电压的大小通过占设定值的百分比来设置,范围为 0~50%。输出电压波形一般分为快升、缓升、保持、缓降和快降 5 个阶段。电压快升、缓 升、保持、缓降及快降这 5 段时间及判定如下图所示:

图 5-3-3 电压快升、缓升、保持、缓降和快降时间

其中:

- a) t1 为快升阶段,最长 0.1s;
- b) t2 为缓升阶段;
- c) t3 为测试阶段;
- d) t4 为缓降阶段;
- e) t5为快降阶段,最长 0.2s,主要用于放电;
- f) 如果在 t4 的前就已判定不合格,则没有缓降阶段;

U2为测试电压,U1为输出起始电压(U2的XX%)。

5.3.6 失败模式

失败模式分为2类,"中止"、"继续":

类别	说明
中止	测试中遇到测试失败的测试步后立即中止整个测试流程,此时再按
	"START"键将重启整个测试流程
继续	测试中遇到测试失败的测试步将中止当前测试步并进行下一步测试

5.3.7 结果显示

结果显示项分为两种模式:

模式	描述					
单步测试结果	测试流程完成后停留在失败步或者第一步的测试结果上					
组测试结果	测试流程完成后以列表的形式呈现测试组内每一步的测试结果					
产品等	则试——[001] HEX300	换 页				
交流耐压 输出电压:	交流耐压 1.500kV 2.420mA 0.0s 合格					
	1.500 kV					
测试电流:						

	жанал: 2. 420 мА	
	— 测试时间: 0.0 s	
mini	合格	
17:44	按STOP键停止测试	17:44

回

图 5-3-4 测试完成后显示单步结果 图 5-3-5 测试完成后以列表形式显示测试结果

5.3.8 系统日期

设置仪器的日期、时间。

5.3.9 型号版本

查看仪表当前软件版本。

5.3.10 通信地址

485 通信时可设置地址 1~256。

5.3.11 通信波特率

可设置 9600、38400、115200;

5.3.12 通信协议

可选择 SCPI、ASCII-E、ASCII-A、HEX-A、Modbus 协议;

5.3.13 外接电源

可选择无电源、变频电源、内置电源;

5.3.14 系统升级

支持电脑升级、U盘升级,可进入客服人员专用的维护界面;

5.4 组别选择

仪器内置了 100 个测试组以供编辑、调用,可通过们键则键或触摸点击移动光标选择待 编辑的测试组,使用 F 菜单编辑、调用进行组别名称的编辑以及调用。

图 5-4-1 组别选择界面

5.4.1 组别编辑

再组别选择界面下,选择编辑 F 菜单键,进入组别编辑界面,如图 5-4-2 所示:

第5章 设置与测试

-		组别	编辑	清空组名
组	名	HEX300		清空条码
起	始位	00		
码	长度	00		键盘编辑
识	别码			
器具	类型	单相		保存
器械	送型	禁用		返回
17:44	1 1	且名长度:(0~16)		

图 5-4-2 组别编辑界面

通过触摸点击对应项目即可完成本界面中相关的各项参数设置,设置完成后按保存键 回到组别选择主菜单。

5.4.1.1 组名

1、通过点击屏幕对应区域弹出字母全键盘,直接输入要编辑的组名,点击 Enter 完成组 名输入;

2、点击键盘输入F菜单键,组名栏下方出现白色方块,代表当前编辑游标,通过右侧 机械按键输入字母或数字,连续按相同按键,字符会不断变化。

5.4.1.2 起始位

代表所录入条形识别码从第几位开始识别并匹配识别码。

5.4.1.3 码长度

代表所录入条形码的总长度。

5.4.1.4 识别码

录入的条形码中截取的一段识别码,截取开始的位置由"起始位"决定,例如,有条形码"6956355012134",要识别的是从第三位开始的"56355012",那么起始位为 3,码长度 13,识别码"56355012",在测试前,只要扫描含有识别码的条码,将马上启动测试。

5.4.1.5 器具类型

所测产品的器具类型设置,可选单相、三相四线、三相三线。具体设置以被测产品的实际情况而定,且当次设置仅对当前测试组有效。

5.5参数设置

在功能选择界面下,选择参数设置F菜单键,进入设置测试组界面,如图 5-5-1 所示:

The second se	参数	(设置——	-[001]	HEX300			换	页
交流耐压	输出电压	1500	V	输出频率	50	Hz		Ś
	电流上限	3.50	mA	并联开关	OFF		插	入
	电流下限	0.000	mA					
<u></u>	测试时间	1.0	s				伯	相
-	缓升时间	0.1	s				新田	相
	缓降时间	OFF	s					(\cdot)
	电弧等级	0					删	除
	补偿电流	OFF	mA					
							返	回
17:44	按上下键或	者点击切	」换测试	步				

第5章 设置与测试

图 5-5-1 测试组设置界面

注: 当密码功能设置为"开"时,则先进入密码输入界面,输入正确的密码方可进入设置 界面。

若要改变当前测试步测试项目,首先将光标移动到左侧区域测试项目名上,再按F菜单插入编辑删除即可完成对该测试步的编辑功能。

若要编辑当前步,使光标移动到右侧区域即可进入当前步的参数编辑;

可通过按 键或 建或者触摸点击切换左侧区域或者右侧区域的各项参数;

每一测试组最多可以设置 50 个测试项,如果只想测某一项或几项,将其它项删除即可。 各项具体参数范围、定义见本节以下内容。

设置完成后按 Exit 键退出,选择保存或者取消当前的设置并回到主菜单。

若已按下 Exit 却要放弃当前的退出操作,可按 STOP 会到编辑态。

5.5.1 交流耐压(AC Withstand Test)测试设置

图 5-5-2 交流耐压设置界面

交流耐压测试相关参数定义如卜:					
序号	项目	输入范围	描述		

1	输出电压	(50~5000)V	交流耐压测试时的输出电压
2	电流上限	(0~40.00)mA	击穿电流报警上限
3	电流下限	(0~9.999)mA	击穿电流报警下限
4	测试时间	(0.5~999.9)s/连续测试	当前步的测试时间
5	缓升时间	(0.1~999.9)s	限定电压以此时间段进行缓升
6	缓降时间	(1.0~999.9)s/关闭	限定电压以此时间段进行缓降
7	电弧等级	0~9	电弧测试的报警等级
8	补偿电流	开启/关闭	是否计入补偿值
9	输出频率	50Hz/60Hz	交流耐压输出频率
10	并联开关	开启/关闭	是否开启并联测试

电弧报警等级的大小应能进行预置和判别,预置的范围为0、1~9级,0表示关电弧侦测功能,9级最灵敏,每个报警等级对应的峰值电流见下表。

电弧报警等级(级)	9	8	7	6	5	4	3	2	1
门限峰值电流 (mA)	2.8	5.5	7.7	10	12	14	16	18	20

5.5.2 直流耐压(DC Withstand Test)测试设置

图 5-5-3 直流耐压设置界面

Ī	直流耐压测试相关参数定义如下:						
序号	项目	输入范围	描述				
1	输出电压	(50~6000)V	直流耐压测试时的输出电压				
2	电流上限	(0~20000)uA	击穿电流报警上限				
3	电流下限	(0~999.9)uA	击穿电流报警下限				
4	测试时间	(0.5~999.9)s/连续测试	当前步的测试时间				
5	缓升时间	(0.4~999.9)s	限定电压以此时间段进行缓升				
6	缓降时间	(1.0~999.9)s/关闭	限定电压以此时间段进行缓降				
7	充电下限	(0~350) uA	最低充电电流设定。				
8	补偿电流	开启/关闭	是否计入补偿值				
9	电弧等级	0~9	电弧测试的报警等级				
10	缓升上限	开启/关闭	缓升过程中是否判断报警上限				
11	电流挡位	自动/定档	设定电流档位为自动换档或固定档位。若				

			设定自动, 仪器会自动选择适合的电流档位; 若设置定档, 需要在总漏电电流上限 (HI-Limit)设定一个值决定该电流档位,
			其目的可以缩短测试时间。
12	并联开关	开启/关闭	是否开启并联测试

最低充电电流设定,是应用于侦测测试线或测试治具的连接是否正常,以确保测试结果的正确性。由于直流耐压测试时漏电电流通常都非常小,所以很难以漏电电流的下限值作为判定测试线或测试治具的连接是否正常的依据。然而被测物实际上都具有些许电容性(Capacitive)存在,因此可以利用侦测被测物的充电电流,作为检测测试线或测试治具的连接是否正常的依据。手动设定最低充电电流数值,请用数字键输入最低充电电流数值,然后再按 ENTE 键存入最低充电电流的数值。自动设定最低充电电流数值,请先将仪器和被测物与测试线或治具接好,并且确定所设定的输出电压和缓升时间参数,与将来实际要做测试的数据完全一致。

缓升上限设定,缓冲电流功能只针对在缓升时间中的充电电流做判定而已。其功能主要 是为了避免因在直流耐压测试进行时,某些被测物的充电电流值常常会高于漏电电流上限的 设定值,而引起误判,进而影响到漏电电流上限判定的正确性。

5.5.3 绝缘电阻(Insulation Resisitance Test)测试设置

图 5-5-4 绝缘电阻设置界面

绝缘电阻测试相关参数定义如下:

序号	项目	输入范围	描述
1	输出电压	(50~2500)V	绝缘测试时的输出电压
2	电阻上限	(0.1~50000.0)MΩ/无上限	绝缘电阻报警上限
3	电阻下限	(0.1~50000.0)MΩ	绝缘电阻报警下限
4	测试时间	(0.5~999.9)s/连续测试	判定延迟时间设定。主要功能为执行绝缘 阻抗上、下限判定的时间依据,因为被测 物大多数都具有电容性(Captive)而产生 很大的充电电流,判定延迟时间可以让本 分析仪在充电电流 稳定之后,才做判定。 判定延迟的时间必须依据被测物的电容 性大小和绝缘阻抗所需要的精确度。
5	缓升时间	(0.1~999.9)s	限定电压以此时间段进行缓升

第	5	童	设置与测试
11	~	-	

6	缓降时间	(1.0~999.9)s/关闭	限定电压以此时间段进行缓降
7	充电下限	(0~3.50) uA	最低充电电流设定。
8	补偿电阻	开启/关闭	是否计入补偿值
9	电流档位	自动/定档	设定电流档位为自动换档或固定档位。若
			设定自动, 仪器会自动选择适合的电流档
			位;若设定定档,需要在总漏电电流上限
			(HI-Limit)设定一个值决定该电流档位,
			其目的可以缩短测试时间。
10	并联开关	开启/关闭	是否开启并联测试

最低充电电流设定,是应用于侦测测试线或测试治具的连接是否正常,以确保测试结果的正确性。由于直流耐压测试时漏电电流通常都非常小,所以很难以漏电电流的下限值作为判定测试线或测试治具的连接是否正常的依据。然而被测物实际上都具有些许电容性(Capacitive)存在,因此可以利用侦测被测物的充电电流,作为检测测试线或测试治具的连接是否正常的依据。手动设定最低充电电流数值,请用数字键输入最低充电电流数值,然后再按 ENTE 键存入最低充电电流的数值。自动设定最低充电电流数值,请先将仪器和被测物与测试线或治具接好,并且确定所设定的输出电压和缓升时间参数,与将来实际要做测试的数据完全一致。

5.5.4	开路侦测	(Open Short	Circuit Detection	Test)	测试设置
-------	------	-------------	--------------------------	-------	------

图 5-5-5 开路侦测设置界面

开路侦测测试相关参数定义如下	:
----------------	---

序号	项目	输入范围	描述
1	标准电容	(0.001~25.000)nF	开路侦测时的标准容值
2	电容上限	(100~500)%/无上限	开路侦测报警上限
3	电容下限	(0~100)%	开路侦测报警下限 s
4	补偿电容	开启/关闭	是否计入补偿值
5	测试模式	电容/电流	测试模式为测电容或测电流

5.5.5 接地电阻(Ground Bond Test)测试设置

	参数	(设置—	—[001]	HEX300			换	页
接地电阻	输出电流 (25.0		输出频率	50 由 阳	Hz	++	
	电流下限	0.0		并联开关	OFF	5	邮	~
	测试时间 开路电压	1.0 6.4	s V				编	辑
	补偿电阻	OFF					Ħ	除
THE.							EDA	
CHIMMENT .							返	回

图 5-5-6 接地电阻设置界面

接地电阻测试相关参数定义如下:

序号	项目	输入范围	描述
1	输出电流	(2.0~40.0)A AC	接地测试时的输出电流
2	电阻上限/	(1~600mΩ)/(0~7.5V)	接地电阻/电压报警上限
	电压上限		
3	电阻下限/	(0~600m Ω)/(0~7.5V)	接地电阻/电压报警下限
	电压下限		
4	测试时间	(0.5~999.9)s/连续测试	当前步的测试时间
			开路电压设定主要在限制输出开路的最大
			电压,也就是设定在定电压模式下的输出
5	开路电压	(3.0~10.0)V	电压,而量测接地阻抗时为定电流模式,为
			确保满足定电流模式下的所有量程规格,
			输出电压请设定在 6.4V。
			测试线归零设定范围为 0~200mΩ(1
		开启/关闭	mΩ/step)。自动设定,先将测试导线、治具
			和被测物上的电源线或连接线(如果电源线
6	<u> </u> 冰砂由阳		或连接线要一起补偿)串联接成一个回路,
0	们居电阻		并将回路的两端分别接到机器的 C+、C-、
			S+、S-的端子上,然后再按面板上的 " 补偿
			测试 "开关,程序会自动量测电路上的电
			阻值。
7	输出频率	50Hz/60Hz	接地电流输出频率
8	测试模式	电阻/电压	测试结果以电阻/电压方式呈现
9	并联开关	开启/关闭	是否开启并联测试

5.5.6 泄漏电流(Leakage Current Test)测试设置

	参数	(设置——	-[001]	HEX300		换	页
泄漏电流	输出电压	233.0	V	测试模式	静态		<7
	电流上限	50.0	U uA	电流类型	有效值	插	入
	电流下限	0.0	u A	探针位置	零线对地		
<u></u>	测试时间	2.0	s	测试网络	MDA (U2)	(A ²)	<i>1</i> .
	输出频率	50	Hz	倒相开关	常规	骊	铒
	电压上限	300.0	V	判断模式	最终值		(A)
Par	电压下限	0.0	V	带电切换	开启	删	除
	补偿电流	OFF	uA				
in minimi						返	回
17.44	按上下键式	老占击也	山拖测量	"书			

图 5-5-7 泄漏电流设置界面

泄漏电流测试相关参数定义如下:

序	项目	输入范围	描述
号			
1	输出电压	(0~300.0)V	控制外接电源的电压
2	电流上限	HEX410/HEX420:(1.0~20000.0)uA	泄漏接触电流报警上限
		HEX430: (1.0~100000.0)uA	
3	电流下限	HEX310/HEX320:(0.0~20000.0)uA	泄漏接触电流报警下限
		HEX330: (0.0~100000.0)uA	
4	测试时间	(0.5~999.9)s/连续测试	测试时间
5	输出频率	(45~65)Hz	控制外接电源的频率
6	电压上限	(0~300.0)V	电源输入电压的判定上限
7	电压下限	(0~300.0)V	电源输入电压的判定下限
8	补偿电流	开启/关闭	是否计入补偿值
9	测试模式	HEX410/HEX420/HEX430(单相)	选择泄漏测试模式
		正常状态(测量电路 S1 闭合)/	
		单一故障(测量电路 S1 断开)	
		HEX430(三相)支持其他模式,	
	ļ	A/B/C/N 开关可任意组合	
10	电流类型	有效值/峰值/交流分量/直流分量	选择泄漏测试电流类型
11	探针位置	火线对地/零线对地/自动/表面间	选择泄漏测试的探针位置
12	测试网络	MDA~MDH 共 8 网络	选择泄漏测试的测试网络
13	倒相开关	常规/反相	选择泄漏测试的相位
14	判断模式	最终值/最大值	判定测试结果的模式
			若下一步测试也为"运行测试",
15	带电切换	开启/关闭	且需要本步测试结束后不让被测
			品断电,则开启本功能

注: Probe Hi、Probe Lo、地线开关、倒相开关的自动状态为选配功能。

5.5.6.1 待测物工作电源状态设定(NEUTRAL; REVERSE; GROUND)

工作电源状态是由开关 S1、S2 和 S3 来决定。 这三个开关可以有八种组合状态, 这 三个开关的状态是由"测试类型"、"倒相开关"以及"地线开关"三个功能所代表。("测试 类型"代表 S1 开关, "倒相开关"代表 S2 开关, 而 "地线开关"则代表 S3 开关。)

要改变待测物的工作电源状态(Line Configuration),请切换"测试类型"、"倒相开关" 及"地线开关"。"测试类型"有"动态"及"静态"两种选项,"地线开关"有"关 闭"及"开启"两种选项;而"倒相开关"有"常规"、"反相"及"自动"三种选 项,当"倒相开关"设为"自动"时,测试过程中取 S2 开关 ON 及 OFF 状态下线路之漏 电流值较大者。

OTED	测试类型	倒相开关	地线开关	待测物工作电源状
SIEP	开关 S1	开关 S2	开关 S3	态
1	CLOSED	A (OFF)	OPEN	状态 1
2	CLOSED	B (ON)	OPEN	状态 2
3	OPEN	A (OFF)	OPEN	状态 3
4	OPEN	B (ON)	OPEN	状态 4
5	CLOSED	A (OFF)	CLOSED	状态 5
6	CLOSED	B (ON)	CLOSED	状态 6
7	OPEN	A (OFF)	CLOSED	状态 7
8	OPEN	B (ON)	CLOSED	状态 8
9	CLOSED	AUTO	OPEN	状态 1 & 2
10	OPEN	AUTO	OPEN	状态 3&4
11	CLOSED	AUTO	CLOSED	状态 5&6
12	OPEN	AUTO	CLOSED	状态 7 & 8

待测物的工作电源共有十二种设定、八种状态如下面表列。

八种状态电源如下:

被测物状态:正常

2、 状态 2: S1:CLOSED、S2:B、S3:OPEN

被测物状态:单一故障、L/N 反向(对L线 Single Fault to Line) 5、状态 5: S1:CLOSED、S2:A、S3:CLOSED

被测物状态:单一故障(对N线 Single Fault to Neutral) 8、状态8:S1:OPEN、S2:B、S3:CLOSED

被测物状态:单一故障、L/N 反向(对L线 Single Fault to Line)

5.5.6.2 人体阻抗模型选择(Meas. Device)

人体阻抗模型为仿真人体阻抗的电路,是由安规执行单位指定作为泄漏电流量测的依据, 下列为人体阻抗模型(MD)所使用的英文字代号和安规规范的对照表及其说明:

MD	安规规范及用途			
	GB4706.1-2005/IEC60335-1-2004家用和类似用途电器			
	GB/T12113-2003/IEC60990-1999 接触电流测量			
	IEC60335-1-2010,GB7000.1-2015/IEC60598-1-2014 灯具			
MDA	GB4943.1-2011/IEC60950-1-2005 信息技术设备			
	GB4793.1-2007/IEC61010-1-2001 测量、控制和实验室用电气设备			
	GB8898.1-2011/IEC60065-1-2005 音频、视频及类似电子设备			
MDB	UL1563-2006 SPA 类电气设备			
MDC	GB9706.1-2007/IEC60601-1-1988 医疗电气设备			
MDC	UL2601-2002 医疗电气设备			
MDD	UL544-1998 牙科医用设备			
	UL923-2002 家用或商用微波炉			
	UL484-2014 房间空气调节器			
	UL1029-2007 高强度气体放电灯			
MDE	UL867-2004 空气清洁器			
	UL697-2012 变形玩具			
	UL544NP-1998 牙科医用设备			
	UL471-1996 商用制冷和冷藏柜、			
MDE	GB/T12113-2003/IEC60990-1999 接触电流测量			
MDF	GB7000.1-2015/IEC60598-1-2014 灯具			
MDG	GB9706.1-2007/IEC60601-1-1988 医疗电气设备			
MDH	GB7000.1-2015/IEC60598-1-2014 灯具			

下列线路图为各种测人体阻抗模型的等效电路,泄漏电流的读值为在量测网络上的电压 降除以等效的直流电阻值。电压表被接在人体阻抗模型 B、C、D、E、G、H 整个量测网络 的 A、B 两端,人体阻抗模型 A 是被接在图上的 U1 或 U2 的两端,及人体阻抗模型 F 是 被接在图上的 U1 或 U3 的两端,这是安规执行单位指定使用于这种特珠人体阻抗模型的量 测方式。

MDA:

MDC:

MDE:

MDB:

MDD:

MDF:

MDG:

5.5.6.3 探针位置(Probe)

测试棒的选择是由开关 SH、SL 和 Probe Switch 来控制,而其面板的设定选项会因"倒相开关"设定而有所不同,共有五种设定及四种泄漏电流量测。下表为探针位置(Probe)的设定说明:

	开う	(七	置		测治学学目的	 久注		
Probe 反正	SH SL Probe Switch		Probe Switch	GND	泄漏电 流重测	奋 注		
Ground To Line	А	А	А	Closed/Open 可选择	对地漏电流 (Earth Leakage Current)			
Probe-HI To Line	В	А	А	Closed/Open 可选择	表面对地漏电流 (Surface to Line Leakage Current)			
Probe-HI To Probe-LO	в	В	А	Closed/Open 可选择	表面间漏电流 (Surface to Surface Leakage			
Ground To Neutral	A	A	В	固定为 Open	对地漏电流 (Earth Leakage Current)	当"倒相开关"功 能设为"反相" 及"自动"无此功 能选项		
AUTO	А	A	A 、 B 各 一次	固定为 Open	对地漏电流(Earth Leakage Current)Ground To Line & Ground To Neutral	当"倒相开关"功 能设为"反相" 及"自动"无此功 能选项		

当"探针位置"设定为"自动"时,取测试过程中 Probe Switch 开关在 A 及 B 位置下的漏电流值较大者。

泄漏电流量测线路:

1、 火线对地 Ground To Line (G-L): SH、SL 开关及 Probe Switch 皆位于 A 位置

2、零线对地 Ground To Neutral (G-N): SH、SL 开关位于 A 位置, Probe Switch 位于 B 位置

3、 Probe-HI To Line (PH-L): SH 开关位于 B 位置, SL 开关及 Probe Switch 位于 A 位置

5.5.6.4 HEX330 三相泄漏工作电源状态设定(NEUTRAL; REVERSE; GROUND)

三相泄漏工作电源状态是由开关 S1、S2、S3、S4 来决定。 这四个开关可以有九种设定,这四个开关的状态是由"测试类型"功能所代表。测试过程中将时间均分,然后根据选择的设定从 STEP1 测试到 STEP4。

状态	动态	静态	ABC	AB	BC	AC	NA	NB	NC			
STEP1	ABCN	А	ABCN	ABN	BCN	ACN	ABCN	ABCN	ABCN			
STEP2	ABN	В	_				ABN	ABN	BCN			
STEP3	BCN	С		— — — ACN		BCN	ACN					
STEP4	ACN	_	_		_	_		_	_			

待测物的工作电源共有九种设定、七种状态如下面表列。

七种状态电源如下:

ABCN: S1:CLOSED, S2: CLOSED, S3: CLOSED, S4: CLOSED

ABN: S1:CLOSED, S2: CLOSED, S3: CLOSED, S4: OPEN

BCN: S1:CLOSED, S2: OPEN, S3: CLOSED, S4: CLOSED

ACN: S1:CLOSED, S2: CLOSED, S3: OPEN, S4: CLOSED

A: S1: OPEN, S2: CLOSED, S3: OPEN, S4: OPEN

B: S1: OPEN, S2: OPEN, S3: CLOSED, S4: OPEN

C: S1: OPEN, S2: OPEN, S3: OPEN, S4: CLOSED

5.5.7 功率测试(Run Test)设置

		参数设量	置——[001] HEX300	换	页
功率测试	输出电压	220.0	V	电流报警 关闭		хĴ
3 <u></u> 6	功率上限	500.0	W	功因报警 关闭	插	Х
·	功率下限	0.0	W	电流档位 高档		
<u></u>	测试时间	1.0	S	带电切换 关闭	1421	<i>4</i> ¤.
	输出频率	50	Hz		骊	铒
	功因上限	1.000				\mathbb{A}
Bei	功因下限	0.100			删	除
	电流上限	40.00	A			
	电流下限	0.00	A		15	नि
C. MILLING		1 e	199		返	凹
17:44	按上下键或	者点击	刃换测词	武步		

图 5-5-7 功率测试设置界面

功率测试相关参数定义如下:

序号	项目	输入范围	描述
1	输出电压	(60.0~300.0)V	控制外接电源的电压
2	功率上限	外置(0~12000.0)W	功率判定报警上限
3	功率下限	外置(0~12000.0)W	功率判定报警下限
4	测试时间	(0.5~999.9)s/连续测试	测试时间
5	输出频率	(45~65)Hz	控制外接电源的频率
6	功因上限	(0.100~1.000)	功率因数判定报警上限
7	功因下限	(0.100~1.000)	功率因数判定报警下限
8	电流上限	低档(2mA~1000mA)	电流判定报警上限
		高档(0.1A~40.00A)	
9	电流下限	低档(2mA~1000mA)	电流判定报警下限
		高档(0.1A~40.00A)	
10	电流报警	开启/关闭	是否开启功率测试电流判定报警
11	功因报警	开启/关闭	是否开启功率测试功率因数判定报警
			选择功率测试电流档位,选择低档时,
12	电流档位	低档/高档	电流测量范围为 2mA~1A, 选择高档
			时,电流测量范围为100mA~40A
			若下一步测试也为"运行测试",且需要
13	带电切换	开启/关闭	本步测试结束后不让被测品断电,则开
			启本功能

5.5.8 启动测试(Start Test)设置

		参数设	置——[001] HEX300	换	页
低压启动	输出电压	195.0	V	电流档位 高档		-7
	电流上限	40.00	A	带电切换 关闭	插	Х
	电流下限	0.00	A			
	测试时间	1.0	s		疟	倡
	输出频率	50	Hz		細	神
					刪	除
Guilline -					返	回
	按上下键或	者点击	切换测试	式步		

图 5-5-18 启动测试设置界面

启动测试相关参数定义如下:

序号	项目	输入范围	描述
1	输出电压	(60.0~300.0)V	控制外接电源的电压
2	电流上限	低档(2mA~1000mA)	电流判定报警上限
		高档(0.1A~40.00A)	
3	电流下限	低档(2mA~1000mA)	电流判定报警下限
		高档(0.1A~40.00A)	
4	测试时间	(0.5~999.9)s/连续测试	测试时间
5	输出频率	(45~65)Hz	控制外接电源的频率
			选择启动测试电流档位,选择低档时,电流
6	电流档位	高档/低档	测量范围为 2mA~1A, 选择高档时,电流测
			量范围为 100mA~40A
			若下一步测试也为"运行测试",且需要本
7	带电切换	开启/关闭	步测试结束后不让被测品断电,则开启本
			功能

5.5.9 等待测试(Wait Test)设置

图 5-5-10 测试等待设置界面

测试等待项可设置等待时间,范围为 0.1s~999.9s/无限长,在等待测试的过程中再次按下 START 键将会完成当前步的等待测试。

5.5.10 删除测试项

用户可以通过删除键来删除当前步的测试内容,如下图所示

图 5-5-11 删除测试步后的参数设置界面

5.6测试开始

产品测试——[001] HEX300	换 页
交流耐压 输出电压:	
1.500 kV	开路侦测
测试电流:	补偿测试
0.000 mA	
测试时间: 1.0 s	组别选择
电流上限: 3.50 mA	
电流下限: 0.000 mA	返 回
17:44 按START键开始测试	

图 5-6-1 产品测试待测界面

当各项设置完成,返回功能选择界面,按F菜单测试开始进入测试模块待测态,将被测体电源线插头插在测试盒上,接地测试钳夹住被测体的接地测试点;确认接线无误后,按 START键启动当前组的测试;若不改变测试条件,只需按 START键即可进行重复测试。

在测试的过程中,按 STOP 键可随时停止测试。

※ 警告 遥控口上的启动和停止信号与前面板上的启动键和停止键

作用是等同的,在不使用遥控口时,应拆除遥控线,以确保安全! 5.6.1 测试开始

	产品测试——[001] HEX300	产品测试——[001] HEX300 🕤
交流耐压	^{输出电压:} 1.500 kv	<u>交流射圧</u> 輸出电压: 1.500 kv
	测试电流: 1.560 mA	测试电流: 2.420 mA
	测试时间: 0.5 s	测试时间: 0.0 s
- allinna.	测试中	宜 船
17:44 找	安STOP键停止测试	17:44 按STOP键停止测试

图 5-6-2 测试执行过程中示意图

图 5-6-3 测试项全合格

1)测试执行过程中,如图 5-6-2 所示:

此时,前面板测试中指示灯(黄色)亮,同时报警灯接口给出"测试中"信号。

2)测试合格,如图 5-6-3 所示。

测试项全部测试合格时,前面板合格指示灯(绿色)亮,蜂鸣器响一声,报警灯接口给出"合格"信号。

第5章 设置与测试

when the state of the	产品测试	दै——[001] HEX300	5	*****	产品测试	——[001] HEX300	5
交流 附压	输出电压:	1.500	kV	交流 附 压	输出电压:	1.500	kV
	测试电流:	10.51	mA		测试电流:	>100	mA
	测试时间: 0.9 s				测试时间: 0.0 s		
annunger		超上限		annuture		短路报警	
17:44 1	安ST0P键停止测试			17:44	按STOP键停止测试		

图 5-6-4 测试不合格

图 5-6-5 测试异常

3)测试不合格或发生异常时,如图 5-6-4、5-6-5 所示。

当有测试项测试不合格时或测试过程中发生异常时,报警指示灯(红色)亮,蜂鸣器响 三声,报警灯接口给出"不合格"信号。

1) 以下情况会导致测试异常保护:

- a. 执行接地测试时接地钳开路或者接地电阻太大;
- b. 执行绝缘和耐压测试时被测体绝缘失效;
- 2) 测量结果的判定:
- a. 对耐压测试击穿电流的上限,随时进行测量结果的判定;对接地电阻测试中的接地 电阻上限随时进行测量结果的判定;
- b. 绝缘测试,在临近测试时间结束时,才给出判定结果。

5.6.2 补偿测试

1) 补偿测试的目的

使用补偿测试,可消除测试引线和非标准的计量环境等因素对测试带来的影响,以达到 更高的测试准确度。

2) 补偿测试的设置

各项补偿值的范围详见第4章 技术规格。

3) 补偿测试的接线

a)接地测试夹短接在测试盒的接地端子上,保障接地回路短路;

b)将待测物从测试盒上取下,保障高压回路开路;

4) 补偿测试值的获取

HEX300系列仪器提供了两种补偿途径:

单步补偿	在参数设置界面中,移动光标选择到补偿测试开关处,打开补偿测试
	开关后按 START 键启动, 仪器自动获得补偿值并显示在屏幕上
总测试组	在产品测试待测状态下,按下 F 菜单补偿测试键后按照屏幕提示完
补偿	成接线,按下 START 键自动进行整组的补偿。

5.6.3 执行功率测试

- 5.6.3.1 单相被测件,使用一元件测量法
 - 电压: $U = U_{AN}$ 电流: $I = I_A$

功率:
$$P = U_{AN} \times I_A$$

5.6.3.2 三相四被测件,使用三元件测量法

电压:
$$U = \frac{U_{AN} + U_{BN} + U_{CN}}{3}$$

电流:
$$I = \frac{I_A + I_B + I_C}{3}$$

功率:
$$P = U_{AN} \times I_A + U_{BN} \times I_B + U_{CN} \times I_C$$

5.6.3.3 三相三被测件,使用三相两表测量法

两表功率之和: $\dot{U}_{AC} * \dot{i}_A + \dot{U}_{BC} * \dot{i}_B = (\dot{U}_A - \dot{U}_C) * \dot{i}_C + (\dot{U}_B - \dot{U}_C) * \dot{i}_B$

因三相对称:
$$\dot{i}_A + \dot{i}_B + \dot{i}_C = 0$$

功率: P =
$$\dot{U}_{AC} * \dot{i}_A + \dot{U}_{BC} * \dot{i}_B$$

5.6.4 执行启动测试

5.6.4.1 单相被测件,使用一元件测量法

电压:
$$U=U_{AN}$$

电流:
$$I = I_A$$

5.6.4.2 三相四被测件,使用三元件测量法

电压:
$$U = \frac{U_{AN} + U_{BN} + U_{CN}}{3}$$

电流:
$$I = \frac{I_A + I_B + I_C}{3}$$

5.6.4.3 三相三被测件,使用三相两表测量法

电压:
$$U = \frac{U_{AB} + U_{BC} + U_{CA}}{3}$$

$$I = \frac{I_A + I_B + I_C}{3}$$

电流:

5.6.5 信息说明

以下为本仪器在执行测试时,会出现在液晶显示器上的各种信息。

测试时间(Dwell)

在测试进行时,在本分析仪读到第一笔测试结果之前,测试的结果会不断的被更新,此时 LCD 显示器会显示"测试时间"。

延迟时间(Delay)

在测试刚开始时,测试电压正逐步上升的期间之中,此时本分析仪尚未读到第一笔测试结果,此时 LCD 显示器会显示"延迟时间"。

缓升时间(Ramp Up)

假如测试设定有缓升(Ramp Up)测试程序,在本分析仪读到第一笔测试结果之前,测试的结果会不断的被更新,此时 LCD 显示器会显示"缓升时间"。

缓降时间(Ramp Down)

假如测试设定有缓降(Ramp DN)测试程序,在本分析仪读到第一笔测试结果之前,测试的结果会不断的被更新,此时 LCD 显示器会显示"缓降时间"。

测试通过(Pass)

假如被测物在做测试时的整个过程都没有任何异常的现象发生时,被认定为通过测试, 此时 LCD 显示器会显示"合格"。

测试中止(Abort)

假如测试正在进行之中,而按 "STOP " 开关或使用遥控装置中断测试,此时 LCD 显示器会显示"中止"。

上限测试失败(HI-LIMIT)

如被测物在做测试时超过该测试上限设定值,会被程序判定为上限造成的测试失败, LCD 显示器会显示"超上限"。

下限测试失败(LO-LIMIT)

如被测物在做测试时的该测试低于下限设定值,会被程序判定为下限造成的测试失败, LCD 显示器会显示"超下限"。

电弧测试失败(Arc Fail)

如被测物在做交流耐压、直流耐压测试时的漏电电流量在设定的漏电电流上限值以内, 但是电弧的电流量超过电弧电流的设定值,造成的测试失败,会被程序判定为被测物的电弧 造成的测试失败,LCD 显示器会显示"电弧超限"。

短路(Short)

如被测物在做测试时,漏电电流量远超过本分析仪可以量测的范围之外,再加上本分析 仪特殊的短路判定电路动作,会被程序判定为短路造成的测试失败,LCD 显示器会显示"短 路报警"。

耐压崩溃(Breakdown)

如被测物在做测试时的漏电电流量远超过本分析仪可以量测的范围,并且电弧的电流量 也远超过本分析仪所能够量测的正常数值之外,会被程序判定为耐压崩溃造成的测试失败, LCD 显示器会显示"过载击穿"。

接地中断失效(GND Fault)

如被测物在做测试时,人体误触高压时,会被本分析仪程序判定为接地中断失效(Smart G.F.I.)造成的停止测试,LCD 显示器会显示 "GFI 保护"。

待测物工作电压上限测试失败(Volt-HI)

如果待测物在测试时工作电压超过超过本仪器的上限值时,程序会立即中止测试,将全部的继电路关闭以及切断待测物的工作电源,LCD显示器会显示"电压超上限"。

待测物工作电压下限测试失败(Volt-LO)

如果待测物在测试时工作电压超过超过本仪器的低于下限值时,程序会立即中止测试,将全部的继电路关闭以及切断待测物的工作电源,LCD显示器会显示"电压超下限"。

待测物工作电流过载(Line-OC)

如果待测物的工作电流值超过本仪器所能输出的最高规定值时,程序会立即中止测试, 将全部的继电路关闭以及切断待测物的工作电源,LCD 显示器会显示"电流过载"。

待测物功率因子值上限测试失败(PF-HI)

待测物的功率因子超过设定值时,程序会将全部的继电路关闭以及切断待测物的工作电源,LCD显示器会显示"功因超上限"。

待测物工作电压值下限测试失败(PF-LO)

待测物功率因子低于设定值时,程序会将全部的继电路关闭以及切断待测物的工作电源, LCD 显示器会显示"功因超下限"。

人体阻抗模型过载(Leak-OC)

如果人体阻抗模型(MD)所量测到的电压值超过本仪器所能量测最高规定值时,程序会 立即中止测试,将全部的继电路关闭以及切断待测物的工作电源,LCD 显示器会显示"MD 保护"。

5.7扩展功能

扩展功能设置包括 U 盘、PLC 功能、条码、打印、LAN、启动锁功能,界面如下所示:

U盘		打印		
功能开关	关闭	功能开关	关闭	
配置文件	9入 - 9-6	LAN		
PLC		功能开关	关闭	
PLC输出(关闭	网络协议	TCP Server	
PLC输入	关闭	联网方式	DHCP	
冬码		— 本机 I F	198.168. 0. 1	
功能开关	关闭	本机端口	4000	
识别方式	按条码长度	启动锁		
条码长度	1	功能开关	关闭) E

图 5-7-1 扩展功能界面

5.7.1 U 盘

请确保U盘的分配单元大小为8192字节,如不是,请先格式化U盘,且分配单元大小为8192字节(U盘请使用至少30元以上16GB以下的品牌U盘,如闪迪、金士顿等,劣质U盘可能导致识别失败)。

用户可通过触摸点击设定 U 盘功能开启或者关闭。 当插入 U 盘后稍等 5 秒左右,屏幕上会出现如下提示符。

图 5-7-2 插入 U 盘后的待机界面

若插入U盘后无反应请反复拔插试验。若开机时已插入U盘,请务必等待仪器寻找到 U盘后在进行操作,即屏幕左上角出现提示符后再进行操作。

U 盘存储的是测试数据记录,将会为当前测试组建立一个独立的文件夹,并按照日期每 天存储一个记录文件,存储格式如下图所示:

	102	01015.	CSV					ł			Micro	soft Ex	cel		8 KE	\$	
A	B	C [E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	
1 seriNO	testTime allRe	sult item_	1 Output	Meas	result	item_2	Output	Meas	result	item_3	Output	Meas	result	item_4	Output	Meas	res
2 69563550	15:16:48 OK	ACW	1.500kV	4.80mA	合格	DCW	2100V	3.3uA	合格	IR	497V	2.025GΩ	合格	GB	25.0A	132mΩ	슴
3 69563551	15:17:01 OK	ACW	1.500kV	4.79mA	合格	DCW	2099V	3.3uA	合格	IR	497V	2.436GΩ	合格	GB	25.2A	133mΩ	슴
4 69563552	15:17:23 OK	ACW	1.500kV	4.79mA	合格	DCW	2102V	3.3uA	合格	IR	501V	2.302GΩ	合格	GB	25.0A	132mΩ	슴
5 69563553	15:17:32 OK	ACW	1.500kV	4.77mA	合格	DCW	2102V	3.2uA	合格	IR	498V	3.182GΩ	合格	GB	25.0A	132mΩ	合
6 69563554	15:17:38 OK	ACW	1.500kV	4.76mA	合格	DCW	2103V	3.2uA	合格	IR	497V	3.508GΩ	合格	GB	25.0A	133mΩ	슴
7 69563555	15:17:46 OK	ACW	1.500kV	4.76mA	合格	DCW	2102V	3.2uA	合格	IR	498V	4.021GΩ	合格	GB	25.0A	133mΩ	合
8 69563556	15:17:53 OK	ACW	1.500kV	4.75mA	合格	DCW	2098V	3.2uA	合格	IR	497V	3.332GΩ	合格	GB	25.0A	133mΩ	合
9 69563557	15:18:01 OK	ACW	1.500kV	4.74mA	合格	DCW	2102V	3.3uA	合格	IR	498V	3.706GΩ	合格	GB	25.0A	133mΩ	合
10 69563558	15:18:09 OK	ACW	1.500kV	4.74mA	合格	DCW	2101V	3.3uA	合格	IR	497V	3.324GΩ	合格	GB	25.0A	133mΩ	승
11 69563559	15:18:17 OK	ACW	1.500kV	4.74mA	合格	DCW	2101V	3.3uA	合格	IR	498V	3.749GΩ	合格	GB	25.0A	133mΩ	슴
12 69563560	15:18:25 OK	ACW	1.500kV	4.74mA	合格	DCW	2100V	3.3uA	合格	IR	498V	3.299GΩ	合格	GB	24.9A	133mΩ	슴
13 69563561	15:18:32 OK	ACW	1.500kV	4.74mA	合格	DCW	2102V	3.3uA	合格	IR	497V	3.468GΩ	合格	GB	25.0A	133mΩ	슴
14 69563562	15:18:40 OK	ACW	1.500kV	4.74mA	合格	DCW	2099V	3.4uA	合格	IR	497V	3.291GΩ	合格	GB	25.0A	133mΩ	슴
15 69563563	15:18:48 OK	ACW	1.500kV	4.73mA	合格	DCW	2101V	3.4uA	合格	IR	497V	3.424GΩ	合格	GB	25.0A	133mΩ	슴
16 69563564	15:18:56 OK	ACW	1.500kV	4.73mA	合格	DCW	2101V	3.4uA	合格	IR	498V	2.919GΩ	合格	GB	25.0A	133mΩ	슴
17 69563565	15:19:04 OK	ACW	1.500kV	4.74mA	合格	DCW	2102V	3.5uA	合格	IR	497V	3.101GΩ	合格	GB	25.0A	133mΩ	合
18 69563566	15:19:12 OK	ACW	1.500kV	4.73mA	合格	DCW	2100V	3.4uA	合格	IR	497V	2.852GΩ	合格	GB	24.9A	134mΩ	合
19 69563567	15:19:18 OK	ACW	1.500kV	4.73mA	合格	DCW	2101V	3.5uA	合格	IR	497V	2.691GΩ	合格	GB	25.0A	133mΩ	合
20 69563568	15:19:26 OK	ACW	1.500kV	4.73mA	合格	DCW	2101V	3.5uA	合格	IR	497V	2.656GΩ	合格	GB	25.0A	134mΩ	슴
21 69563569	15:19:33 OK	ACW	1.500kV	4.73mA	合格	DCW	2102V	3.6uA	合格	IR	497V	2.795GΩ	合格	GB	25.0A	133mΩ	슴
22 69563570	15:19:41 OK	ACW	1.500kV	4.73mA	合格	DCW	2103V	3.6uA	合格	IR	498V	2.917GΩ	合格	GB	25.0A	133mΩ	合
23 69563571	15:19:49 OK	ACW	1.500kV	4.73mA	合格	DCW	2100V	3.6uA	合格	IR	499V	2.342GΩ	合格	GB	25.0A	133mΩ	合
24 69563572	15-19-57 OK	ACW	1.500kV	4 73mA	合格	DCW	2102V	3.6uA	合格	IR	498V	2 305GO	合格	GB	25 0A	134mO	- A -
	20201015	+								4							Þ

图 5-7-3 U 盘文件存储格式

5.7.2 PLC

用户可通过触摸点击设定 PLC 输入输出功能开启或者关闭。

PLC 输入功能包括: PLC 远程控制启动停止、PLC 选组器选组;

PLC 输出功能包括:报警灯指示、PLC 测试状态输出;

PLC 功能的引脚定义请参见第 6.2 和 6.3 节。

5.7.3 条码

用户可通过触摸点击设定条码功能开启或者关闭。

条码枪可选 USB 条码枪或者串口条码枪, USB 条码枪与 U 盘共用同一个接口。

当选择识别方式为按条码长度识别时,在下方输入框中设定条码长度,当扫描到的条码 长度大于等于设定值时启动当前测试组的测试。

当选择识别方式为按识别码识别时,在组别编辑页面,通过设置起始位、码长度、识别 码,在扫描的条码中含有从起始位开始的长度为码长度的识别码时,切换到对应的测试组并 启动测试。

5.7.4 打印

用户可通过触摸点击设定打印功能开启或者关闭,需根据客户需求选用 USB 打印机或 者串口打印机,定制打印信息。

5.7.5 LAN

用户可通过触摸点击设定 LAN 功能开启或者关闭。

LAN 可以实现对接 MES 或者与上位机通信用,带宽为 100Mb/s 全双工。

网络协议:可选 TCP Server、TCP Client、UDP 三种通信协议,具体选择请根据客户自身需要;

联网方式:可选 DHCP、静态 IP;

本地 IP:选择 DHCP 时,本机 IP 地址将从地址池中自动分配,选择静态时在 IP 地址处 输入固定 IP 作为本机 IP;

远端 IP: 与仪表连接的上位机的 IP 地址;

本机端口:请根据需要进行设置。

5.7.6 启动锁

HEX 系列具有锁定功能,要启动测试前,需先确认是否被锁定。按 START 键后,如果本仪器已被锁定,会发出两声的警告声,同时显示器也会提示"请先闭合启动锁"。请将SIGNAL INPUT 中的 INTER LOCK 短接。用户可通过触摸点击设定启动锁功能开启或者关闭。

5.8关机

在使用结束后,请按以下顺序关机:

- 1) 按 STOP 键停止测试,返回"功能选择"界面;
- 2) 关闭前面板上的电源开关;
- 3) 拆除被测体。

- 1)绝缘/直耐测试结束后请勿立即触及被测体, 谨防电击!
- 2) 禁止频繁开关机,下次开机应至少间隔 30s!

3)除非紧急情况,禁止在测试进行中直接关断本机的电源开关!

第6章 使用接口

6.1 报警灯接口

报警灯接口为有源信号输出接口,采用 5P 航空插座(公),如图 6-1-1 所示。

图 6-1-1 报警灯口插座(公)

引脚定义:

- 1) 1-4 导通:正在测试
- 2) 2-4 导通:测试结果合格
- 3) 3-4 导通:测试结果不合格,或异常报警
- 4) 4为公共端(电源高端,+12V)
- 5) 5 为空针。

选配附件为三色报警灯,将三色报警灯 5P 航空插头插在左侧板的 5P 报警灯接口插座 上即可。

▲ 注 意 在开机自检时 1-4、2-4、3-4 会同时导通,此时最大的允 许输出总电流为 450mA,单一通道为 150mA,如果自制报警灯,请注意此问题!

6.2 PLC输出接口

采用 8P 插拔式接线端子(公),提供测试状态开关量输出信号,如图 6-2-1 所示。

SIGNAL OUTPUT

输出	信号名称	描述
	TESTING	测试中
测试状态	PASS	测试通过
信号输出	FAIL	测试失败
	ERROR	测试错误

图 6-2-1 PLC 接口插座(公)

若要使用 PLC 测试状态输出功能,也要在系统设置界面进行设置。

6.3 遥控接口

遥控接口为有源信号输入接口,采用 4P 插拔式接线端子(公),如图 6-3-1 所示。若要 使用 PLC 遥控输入功能,必须将仪器【扩展功能】中的【PLC 输入】选择为 ON,此时,前 面板的"START"按键将不可用;

SIGNAL INPUT

图 6-3-1 遥控口插座(公)

引脚定义:

1) 1-2导通:停止测试

2) 1-3导通: 启动测试

3) 1为公共端(电源低端, GND)

选配附件为遥控盒,将遥控盒 4P 插拔式接线端子(母)插在左侧板的 4P 插拔式接线端子上即可,启动键、停止键与前面板上的启动键、停止键等效。

▲ 注 意 如果自制遥控开关,务必使用无源非自锁开关!

6.4 外接选组器接口

采用 1 个 6-Pin 插拔式接线端子,如图 6-4-1 所示。使用外部外部选组器调组,最多可调 7 组。

GROUP SELECT

图 6-4-1 外接选组器插座(公)

测试仪允许用户输入 PM0、PM1 和 PM2 三位开关量译码任意选择 7 个测试组别中的其中之一,选择将在 STB 的上升沿有效,如下表所示:

开关量输入		选通控制	右海に内相	
PM2	PM1	PM0	STB	有双心囚组

第6章 使用接口

0	0	0		无操作
0	0	1		(1组)
0	1	0	5	(2组)
0	1	1	5	(3组)
1	0	0		(4组)
1	0	1		(5组)
1	1	0		(6组)
1	1	1		(7组)

注: 1、 0----代表断开开关量, 1----代表闭合开关量;

2、 STB 由闭合转为断开,视为一个有效上升沿,控制时间见图 5-2 遥控测试组选择时序图;

3、"断开"开关量指与 COM 间开路,闭合指与 COM 间短路。PLC 口选择组别时需 遵照如图 5-4-2 所示的时序图。

警告 图 7-4-2 中的 TESTING 为输出信号,系统不允许在测试期间调用测试组,

否则该调用指令将会被忽略。

6.5 启动锁接口

采用 2P 插拔式接线端子 (公),提供启动保护输入,如图 6-5-1 所示。

SIGNAL INPUT

图 6-5-1 启动锁插座(公)

若要使用启动锁功能,必须将仪器【扩展功能】中的【启动锁】选择为 ON,此时, 若没有短接 INNER LOCK 的两针脚,前面板的"START"按键将不可用,测试无法启动;

6.6 USB接口

USB 接口为标准 USB-A 接口,位于仪器的正面左下方位置,可插入 U 盘、条码枪打印 机等 USB 设备。

6.7 通信接口

本仪器提供的通信接口为1个RS232接口(可选配RS485),上位机与此接口相连,可 实现对本仪器的控制。采用9针D型连接器(公口),信号定义如图6-7-1(a)和(b)所示;

注 意 使用通信功能时,请注意连接计算机的顺序:关闭本仪器

电源,连接通信线;先打开计算机的电源,待计算机启动后再打开测试仪。

6.8 外部设备扩展接口

通信口为 RS232 接口,采用 DB9 插座(公),如图 6-8-1 所示。此接口是一个标准 RS-232 接口,可与其他的 RS-232 设备交互控制。

图 6-8-1 通信口插座(公)

RS232 接口引脚定义:

- 2: RXD, 接收数据
- 3: TXD, 发送数据
- 5: GND, 地

第7章 维护指南

7.1维护和保养

为了防止触电的发生,请不要掀开机器的上盖。机器内部所有零件均非客户所能维修, 内部零件亦无需清洁。若要外部清洁,用清洁干净的抹布擦拭即可,避免使用液体清洁剂或化学 溶剂,以免渗入机箱、控制按键和开关,化学溶剂也会损坏塑料零件及印刷文字。因本机设计、使用零 件及制程均符合 CE (EMC / LVD),更换任何线材和高压零件必须由海思科技或其经销商直接 提供。

如果仪器有异常情况发生,请寻求海思科技或其指定的经销商给予维护,未经原厂许可 而被修改的仪器将不给予保证。未经原厂许可而自行修改仪器或使用未经原厂认可的零件 而导致操作人员或仪器任何损害,海思科技概不负责。如发现送回检修的仪器被修改,海 思科技会将其恢复至原来状态而其费用须由客户自付。

7.1.1 定期维护

险。如果您使用的测试仪需要校准,请与海思科技公司客服中心联系。

■ 测试仪若长期不使用,应每月通电一次,通电时间不少于 30 分钟。

7.1.2 日常维护

- 本系列测试仪使用环境应通风良好,干燥、无粉尘、无强电磁干扰。
- 测试仪长时间工作后(24小时)应关电10分钟以上,以保持仪表良好的工作状态。
- 确保测试仪安全接地。
- 电源线、测试盒、接地测试钳等附件长期使用后可能会出现接触不良或破损,每次 使用前应检修。
- 请使用软布和中性清洁剂清洁测试仪。在清洗的前,确保先断开电源,拆除电源线;
 请勿使用稀释剂、苯等挥发性物质清洁测试仪,否则会改变测试仪机壳颜色、擦掉机壳上的标识、使 LCD 显示模糊不清。

7.1.3 使用者的修改

禁止擅自打开仪器的机壳,以防意外触电;更不允许擅自更改仪器的线路或零件,如有 更改,仪器的品保承诺将自动失效。如发现仪器被擅自更改,本公司技术人员将会把仪器复 原,并收取维修费用。

7.2简单故障处理

於 警 告 测试仪必须由有经验的专业人员修理和维护,没有受过合 格训练的人员修理和维护时,可能造成人身伤害或死亡。
序号	故障现象	处理方法
1	开机液晶屏无显示。	检查并确认仪器电源线可靠连接。
2	耐压、绝缘测试中出现异常保护。	检查耐压、绝缘测试连线是否有短路现象并予以纠正。
3	接地测试出现异常保护。	检查接地测试连线是否开路并予以纠正。
4	仪器出现死机状态。	关机,等待 30s 后重新开机。
5	仪器与计算机无法通信。	1. 每次启用通信系统时,应先开计算机,待计算机启动
		后,再开测试仪。
		2. 检查并确认通信线连接正确可靠。
		3. 检查并确认己正确安装通信软件。
		4. 检查并确认选择的通信接口正确。
		5. 检查并确认仪器的地址设置符合计算机通信要求。
		6. 检查并确认计算机和仪器的波特率设置一致。
6	无法识别插入的 U 盘	检查所用 U 盘是否符合本手册 5.7.1 节要求。
7	GFI 报警	漏电保护机制,检查接线、被测物是否存在接地现象并
		予以纠正。
8	短路报警	排查测试仪工装是否短路,将测试线取下悬空放置,测
		试仪空载测试一遍是否报警。
9	在测试绝缘电阻时数值大幅度波 动	在测试过程中会伴随有继电器连续切换的异响声,这基
		本就可以确定是容性电阻。我们也可以通过"开路侦测"
		功能进行测试容值,测试结果>40uF的就是容性电阻。
10	在测试绝缘电阻时数值会随时间	请检查测试工装以及线路,是否有存在接触不良或者测试线断开但依然接触在一起的现象,予以处理。
	攀升,或者多测测试结果差异明	
	显	

第7章 维护指南

第8章 通信协议

1.测试仪 RS232/485 地址设置与上位机所选地址一致!
2.测试仪 RS232/485 波特率设置与上位机所选波特率一致!
3. 上位机按照"下传数据命令格式"发送命令!
否则通信将不能实现!

握手协议

由主机和从机组成的测控网络中(图 8-1 所示),一次通信是首先由主机的下传命令发起的,以从机的应答结束。所以握手协议采用单向握手协议,即仅在从机的上传数据中有关于接收主机数据是否正确的信息,主机根据此信息确定是否重发控制命令。而主机在收到从机的上传数据后,可根据其所带的校验字,来判断上传数据是否正确,如有误,则向从机重发命令。

图 8-1 握手协议

通信接口定义

采用9针D型标准接口,定义如图8-2所示

图 8-2 通信接口

通信协议

见电子版附录: <u>HEX300 通信协议</u>。 下载地址: http://china-hitek.com/downloads

> 版本: V2.0 2024年5月

海思伟创公众号

- 青岛海思伟创电子科技有限公司
- 电话: 18560655627
- 网址: www.china-hitek.com
- 地址:青岛市高新区宝源路780号联东U谷

*免责声明

本用户手册所标示图片数据等,最终解释权归青岛海思伟创电子科 技有限公司所有。